Skip to main content
Log in

Microstructural evolution and mechanical properties of a 5052 Al alloy with gradient structures

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, we report on the microstructural evolution and mechanical properties of a 5052 Al alloy processed by rotationally accelerated shot peening (RASP). A thick deformation layer of ∼2 mm was formed after the RASP process. Nano-sized grains, equiaxed subgrains, and elongated subgrains were observed along the depth of the deformation layer. Dislocation accumulation and dynamic recrystallization were found primarily responsible for the grain refinement process. An obvious microhardness gradient was observed for all of the samples with different RASP processing parameters, and the microhardness in the top surface of 50 m/s-5 min RASP-processed sample is twice that of its coarse-grained (CG) counterpart. The yield strengths of the RASP-processed 5052 Al alloy samples were 1.4–2.6 times that of CG counterparts, while retaining a decent ductility (25–84% that of CG). The superior properties imparted by the gradient structure are expected to expand the application of the 5052 Al alloy as a structural material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. X.Y. Liu, P.P. Ohotnicky, J.B. Adams, C.L. Rohrer, and R.W. Hyland: Anisotropic surface segregation in Al–Mg alloys. Surf. Sci. 373, 357 (1997).

    Article  Google Scholar 

  2. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).

    Article  CAS  Google Scholar 

  3. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5 (2002).

    Article  CAS  Google Scholar 

  4. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: Fundamentals of superior properties in bulk nanoSPD materials. Mater. Res. Lett. 4, 1 (2016).

    Article  CAS  Google Scholar 

  5. N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa: Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scr. Mater. 40, 795 (1999).

    Article  CAS  Google Scholar 

  6. H. Pirgazi, A. Akbarzadeh, R. Petrov, and L. Kestens: Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater. Sci. Eng., A 497, 132 (2008).

    Article  CAS  Google Scholar 

  7. Y.T. Zhu and T.C. Lowe: Observations and issues on mechanisms of grain refinement during ECAP process. Mater. Sci. Eng., A 291, 46 (2000).

    Article  Google Scholar 

  8. M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Review: Processing of metals by equal-channel angular pressing. J. Mater. Sci. 36, 2835 (2001).

    Article  CAS  Google Scholar 

  9. M. Kawasaki, Z. Horita, and T.G. Langdon: Microstructural evolution in high purity aluminum processed by ECAP. Acta Mater. 524, 143 (2009).

    Google Scholar 

  10. M. Zha, Y.J. Li, R.H. Mathiesen, R. Bjørge, and H.J. Roven: Microstructure evolution and mechanical behavior of a binary Al–7Mg alloy processed by equal-channel angular pressing. Acta Mater. 84, 42 (2015).

    Article  CAS  Google Scholar 

  11. T.L. Tsai, P.L. Sun, P.W. Kao, and C.P. Chang: Microstructure and tensile properties of a commercial 5052 aluminum alloy processed by equal channel angular extrusion. Mater. Sci. Eng., A 342, 144 (2003).

    Article  Google Scholar 

  12. M.P. Liu, H.J. Roven, X.T. Liu, M. Murashkin, R.Z. Valiev, T. Ungar, and L. Balogh: Grain refinement in nanostructured Al–Mg alloys subjected to high pressure torsion. J. Mater. Sci. 45, 4659 (2010).

    Article  CAS  Google Scholar 

  13. Y. Cao, Y.B. Wang, R.B. Figueiredo, L. Chang, X.Z. Liao, M. Kawasaki, W.L. Zheng, S.P. Ringer, T.G. Langdon, and Y.T. Zhu: Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution. Acta Mater. 59, 3903 (2011).

    Article  CAS  Google Scholar 

  14. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58, 33 (2006).

    Article  Google Scholar 

  15. Y.T. Zhu, X.Z. Liao, and X.L. Wu: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).

    Article  CAS  Google Scholar 

  16. W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, and S.N. Mathaudhu: Ultrastrong Mg alloy via nano-spaced stacking faults. Mater. Res. Lett. 2, 61 (2013).

    Article  CAS  Google Scholar 

  17. Loorentz and Y.G. Ko: Effect of differential speed rolling strain on microstructure and mechanical properties of nanostructured 5052 Al alloy. J. Alloys Compd. 586, S205 (2014).

    Article  CAS  Google Scholar 

  18. U.G. Gang, S.H. Lee, and W. Jono: The evolution of microstructure and mechanical properties of a 5052 aluminium alloy by the application of cryogenic rolling and warm rolling. Mater. Trans. 50, 82 (2009).

    Article  CAS  Google Scholar 

  19. Y.B. Lee, D.H. Shin, and W.J. Nam: Effect of deformation temperature on the formation of ultrafine grains in the 5052 Al alloy. Met. Mater. Int. 10, 407 (2004).

    Article  CAS  Google Scholar 

  20. B. Wang, X.H. Chen, F.S. Pan, J.J. Mao, and Y. Fang: Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy. Trans. Nonferrous Met. Soc. China 25, 2481 (2015).

    Article  CAS  Google Scholar 

  21. K.C. Sekhar, R. Narayanasamy, and K. Velmanirajan: Experimental investigations on microstructure and formability of cryorolled AA 5052 sheets. Mater. Des. 53, 1064 (2014).

    Article  CAS  Google Scholar 

  22. J.T. Shi, L.G. Hou, C.Q. Ma, J.R. Zuo, H. Cui, L.Z. Zhuang, and J.S. Zhang: Mechanical properties and microstructures of 5052 Al alloy processed by asymmetric cryorolling. Mater. Sci. Forum 850, 823 (2016).

    Article  Google Scholar 

  23. Y.C. Chen, Y.Y. Huang, C.P. Chang, and P.W. Kao: The effect of extrusion temperature on the development of deformation microstructures in 5052 aluminum alloy processed by equal channel angular extrusion. Acta Mater. 51, 2005 (2003).

    Article  CAS  Google Scholar 

  24. Y.T. Zhu and X.Z. Liao: Nanostructured metals: Retaining ductility. Nat. Mater. 3, 351 (2004).

    Article  CAS  Google Scholar 

  25. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  26. K. Lu: Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 1, 16019 (2016).

    Article  CAS  Google Scholar 

  27. T.H. Fang, W.L. Li, N.R. Tao, and K. Lu: Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331, 1587 (2011).

    Article  CAS  Google Scholar 

  28. X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu: Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. U. S. A. 111, 7197 (2014).

    Article  CAS  Google Scholar 

  29. E. Ma and T. Zhu: Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today (2017). Available at: http://dx.doi.org/10.1016/j.mattod.2017.02.003.

    Google Scholar 

  30. X.L. Wu, P. Jiang, L. Chen, and Y.T. Zhu: Synergetic strengthening by gradient structure. Mater. Res. Lett. 2, 185 (2014).

    Article  CAS  Google Scholar 

  31. K. Lu and J. Lu: Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. J. Mater. Sci. Technol. 15, 193 (1999).

    Article  CAS  Google Scholar 

  32. K. Lu and J. Lu: Nanostructured surface layer on metallic materials induced by SMAT. Mater. Sci. Eng., A 375–377, 38 (2004).

    Article  CAS  Google Scholar 

  33. W.L. Li, N.R. Tao, and K. Lu: Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scr. Mater. 59, 546 (2008).

    Article  CAS  Google Scholar 

  34. X.C. Liu, H.W. Zhang, and K. Lu: Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342, 337 (2014).

    Article  CAS  Google Scholar 

  35. X. Wang, Y.S. Li, Q. Zhang, Y.H. Zhao, and Y.T. Zhu: Gradient structured copper by rotationally accelerated shot peening. J. Mater. Sci. Technol. 33, 758 (2017).

    Article  Google Scholar 

  36. Z. Horita, D.J. Smith, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Observations of grain boundary structure in submicrometer-grained Cu and Ni using high-resolution electron microscopy. J. Mater. Res. 13, 446 (1998).

    Article  CAS  Google Scholar 

  37. K. Oh-ishi, Z. Horita, D.J. Smith, and T.G. Langdon: Grain boundary structure in Al–Mg and Al–Mg–Sc alloys after equal-channel angular pressing. J. Mater. Res. 16, 583 (2001).

    Article  CAS  Google Scholar 

  38. Y. Cao, Y.B. Wang, X.H. An, X.Z. Liao, M. Kawasaki, S.P. Ringer, T.G. Langdon, and Y.T. Zhu: Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion. Acta Mater. 63, 16 (2014).

    Article  CAS  Google Scholar 

  39. K.T. Park and D.H. Shin: Microstructural interpretation of negligible strain-hardening behavior of submicrometer-grained low-carbon steel during tensile deformation. Metall. Mater. Trans. A 33, 705 (2002).

    Article  Google Scholar 

  40. Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungar, Y.M. Wang, E. Ma, and R.Z. Valiev: Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res. 18, 1908 (2003).

    Article  CAS  Google Scholar 

  41. H.R. Song, Y.S. Kim, and W.J. Nam: Mechanical properties of ultrafine grained 5052 Al alloy produced by accumulative roll-bonding and cryogenic rolling. Met. Mater. Int. 12, 7 (2006).

    Article  Google Scholar 

  42. A. Mishra, B.K. Kad, F. Gregori, and M.A. Meyers: Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis. Acta Mater. 55, 13 (2007).

    Article  CAS  Google Scholar 

  43. Y.S. Li, N.R. Tao, and K. Lu: Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 56, 230 (2008).

    Article  CAS  Google Scholar 

  44. H.Q. Sun, Y.N. Shi, M.X. Zhang, and K. Lu: Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Acta Mater. 55, 975 (2007).

    Article  CAS  Google Scholar 

  45. H.W. Chang, P.M. Kelly, Y.N. Shi, and M.X. Zhang: Effect of eutectic Si on surface nanocrystallization of Al–Si alloys by surface mechanical attrition treatment. Mater. Sci. Eng., A 530, 304 (2011).

    Article  CAS  Google Scholar 

  46. M.X. Yang, Y. Pan, F.P. Yuan, Y.T. Zhu, and X.L. Wu: Back stress strengthening and strain hardening in gradient structure. Mater. Res. Lett. 4, 145 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial supports from the National Key R&D Program of China (Grant No. 2017YFA0204403), National Natural Science Foundation of China (Grant Nos. 51301092, 51501092, and 51601094), Nanjing University of Science and Technology (Grant No. AE89991), Pangu Foundation, and the Jiangsu Key Laboratory of Advanced Micro&Nano Materials and Technology are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusheng Li.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

A previous error in this article has been corrected. For details, see 10.1557/jmr.2017.459

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, L., Nie, J. et al. Microstructural evolution and mechanical properties of a 5052 Al alloy with gradient structures. Journal of Materials Research 32, 4443–4451 (2017). https://doi.org/10.1557/jmr.2017.310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.310

Navigation