A new Ag/Bi7Ta3O18 plasmonic photocatalyst with a visible-light-driven photocatalytic activity


A new plasmonic photocatalyst Ag/Bi7Ta3O18 was fabricated by photodeposition-hydrothermal method. The phase composition, microstructure, surface areas, average pore size, UV-vis diffuse reflection spectra, and photocatalytic activities of composite photocatalysts were investigated in detail. The results of the measurements indicated that the Ag0 nanoparticle successfully loads on the surface of Bi7Ta3O18, and the 0.06 Ag/Bi7Ta3O18 photocatalysts exhibited the best photocatalytic activity for the degradation of Rhodamine B (RhB). The improved photocatalytic activity could be contributed to the localized surface plasmon resonance caused by the collective oscillation of the surface electrons of Ag nanoparticles. Additionally, the photocatalytic reaction mechanism was studied by photoluminescence photocurrent, and electron spin resonance analysis. As a result, the Ag nanoparticles onto the Bi7Ta3O18 surface enlarged the electron-hole separation, and the (˙OH) was the dominated active species of degradation RhB in the photocatalytic process.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    N. Karthikeyan, T. Sivaranjani, S. Dhanavel, V.K. Gupta, V. Narayanan, and A. Stephen: Visible light degradation of textile effluent by electrodeposited multiphase CuInSe2 semiconductor photocatalysts. J. Mol. Liq. 227, 194 (2016).

    Article  CAS  Google Scholar 

  2. 2.

    Z.H. Zhao, M. Wang, T.Z. Yang, M.H. Fang, L.N. Zhang, H.K. Zhu, C. Tang, and Z.H. Huang: In situ co-precipitation for the synthesis of an Ag/AgBr/Bi5O7I heterojunction for enhanced visible-light photocatalysis. J. Mol. Catal. A: Chem. 424, 8 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    J. Di, J.X. Xia, S. Yin, H. Xu, L. Xu, Y.G. Xu, M.Q. He, and H.M. Li: Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. J. Mater. Chem. A 2(15), 5340 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    L. Chen, J. He, Y. Liu, P. Chen, C.T. Au, and S.F. Yin: Recent advances in bismuth-containing photocatalysts with heterojunctions. Chin. J. Catal. 37(6), 780 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    X. Li, J.G. Yu, and M. Jaroniec: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    R.A. He, S.W. Cao, P. Zhou, and J.G. Yu: Recent advances in visible light Bi-based photocatalysts. Chin. J. Catal. 35(7), 989 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Y.Y. Li, J.S. Wang, H.C. Yao, L.Y. Dang, and Z.J. Li: Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities. Catal. Commun. 12(7), 660 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    S. Tu, M.L. Lu, X. Xiao, C.X. Zheng, H. Zhong, X.X. Zuo, and J.M. Nan: Flower-like Bi4O5I2/Bi5O7I nanocomposite: Facile hydrothermal synthesis and efficient photocatalytic degradation of propylparaben under visible-light irradiation. RSC Adv. 6(50), 44552 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Y.G. Yu, G. Chen, X. Wang, D.C. Jia, P.X. Tang, and C. Lv: A facile approach to construct BiOI/Bi5O7I composites with heterostructures: Efficient charge separation and enhanced photocatalytic activity. RSC Adv. 5(91), 74174 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    G.K. Zhang, L. Ming, S.J. Yu, S.M. Zhang, B.B. Huang, and J.G. Yu: Synthesis of nanometer-size Bi3TaO7 and its visible-light photocatalytic activity for the degradation of a 4BS dye. J. Colloid Interface Sci. 345(2), 467 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    K. Shimada, C. Izawa, and T. Watanabe: Low-temperature synthesis of α-BiTaO4 photocatalyst by the flux method. ISRN Mater. Sci. 2012(11–12), 207 (2012).

    Google Scholar 

  12. 12.

    Z.G. Zou, J.H. Ye, K. Sayama, and H. Arakawa: Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTa1–xNbxO4 (0 ≤ x ≤ 1). Chem. Phys. Lett. 343(3–4), 303 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    B.F. Luo, D.B. Xu, L. Di, G.L. Wu, M.M. Wu, W.D. Shi, and C. Min: Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline. Chem. Phys. Lett. 7(31), 17061 (2015).

    CAS  Google Scholar 

  14. 14.

    M.P. Chon, K.B. Tan, C.C. Khaw, Z. Zainal, Y.H. Taufiq Yap, S.K. Chen, and P.Y. Tan: ChemInform abstract: Investigation of the phase formation and dielectric properties of Bi7Ta3O18. ChemInform 45(15), 479 (2014).

    Article  Google Scholar 

  15. 15.

    J.Q. Wen, J. Xie, X.B. Chen, and X. Li: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    C. Wu and Q.H. Xu: Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir 25(16), 9441 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Y.P. Liu, F. Liang, H.D. Lu, Y.W. Li, C.Z. Hu, and H.G. Yu: One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4. Appl. Catal., B 115–116(15), 245 (2012).

    Article  CAS  Google Scholar 

  18. 18.

    J.D. Li, W. Fang, C.L. Yu, W.Q. Zhou, L.H. Zhu, and Y. Xie: Ag-based semiconductor photocatalysts in environmental purification. Appl. Surf. Sci. 358, 46 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Z.Z. Han, L.L. Ren, Z.H. Cui, C.Q. Chen, H.B. Pan, and J.Z. Chen: Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance. Appl. Catal., B 126(38), 298 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    H.R. Liu, Y.C. Hua, Z.X. Zhang, X.G. Liu, H.S. Jia, and B.S. Xu: Synthesis of spherical Ag/ZnO heterostructural composites withexcellent photocatalytic activity under visible light and UV irradiation. Appl. Surf. Sci. 355, 644 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    F. Wu, X.Y. Hu, J. Fan, E.Z. Liu, T. Sun, L.M. Kang, W.Q. Hou, C.J. Zhu, and H.C. Liu: Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics 8(2), 501 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    G. Chang, I. Tanahashia, and M. Oyama: Localized surface plasmon resonance sensing properties of photocatalytically prepared Ag/TiO2 films. J. Mater. Res. 25, 117 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    S. Li, Q. Tao, D.W. Li, K. Liu, and Q.Y. Zhang: Photocatalytic growth and plasmonic properties of Ag nanoparticles on TiO2 films. J. Mater. Res. 30, 304 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    K. Dai, L. Lu, J. Dong, Z. Ji, G. Zhu, Q. Liu, Z. Liu, Y. Zhang, D. Li, and C. Liang: Facile synthesis of a surface plasmon resonance-enhanced Ag/AgBr heterostructure and its photocatalytic performance with 450 nm LED illumination. Dalton Trans. 42(13), 4657 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    X. Xiao, W.D. Zhang, J.Y. Yu, Y.J. Sun, Y.X. Zhang, and F. Dong: Mechanistic understanding of ternaryAg/AgCl@La(OH)3 nanorods as novel visible light plasmonic photocatalysts. Catal.: Sci. Technol. 6, 5003 (2016).

    CAS  Google Scholar 

  26. 26.

    C.B. Li, Y.X. Han, and G.Z. Zhao: Synthesis of Ag/AgCl/TiO2 nanotubes: A highly efficient visible light photocatalyst. J. Mater. Sci.: Mater. Electron. 28(2), 1 (2017).

    Google Scholar 

  27. 27.

    S.T. Zhong, W. Jiang, M. Han, G.Z. Liu, N. Zhang, and Y. Lu: Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance undervisible light irradiation. Appl. Surf. Sci. 347, 242 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    J.H. Seo, W.I. Jeon, U. Dembereldorj, S.Y. Lee, and S.W. Joo: Cytotoxicity of serum protein-adsorbed visible-light photocatalytic Ag/AgBr/TiO2 nanoparticles. J. Hazard. Mater. 198(2), 347 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    E. Vasilakia, I. Georgaki, D. Vernardou, M. Vamvakaki, and N. Katsarakis: Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 353, 865 (2015).

    Article  CAS  Google Scholar 

  30. 30.

    H.K. Zhu, M.H. Fang, Z.H. Huang, Y.G. Liu, K. Chen, M. Guan, C. Tang, L.N. Zhang, and M. Wang: Novel chromium doped perovskites A2ZnTiO6 (A = Pr, Gd): Synthesis, crystal structure and photocatalytic activity under simulated solar light irradiation. Appl. Surf. Sci. 393(30), 348, (2016).

    Google Scholar 

  31. 31.

    F. Yusoff, N. Mohamed, A. Aziz, and S.A. Ghani: Electrocatalytic reduction of oxygen at perovskite (BSCF)–MWCNT composite electrodes. Mater. Sci. Appl. 5(4), 199 (2014).

    CAS  Google Scholar 

  32. 32.

    B.A. Sexton and N.R. Avery: Coordination of acetonitrile (CH3CN) to platinum (111): Evidence for an η2(C, N) species. Surf. Sci. 129(1), 21 (1983).

    CAS  Article  Google Scholar 

  33. 33.

    H. Wang, L. Du, L.L. Yang, W.J. Zhang, and H.B. He: Sol–gel synthesis of La2Ti2O7 modified with PEG4000 for the enhanced photocatalytic activity. J. Adv. Oxid. Technol. 19(2), 366 (2016).

    CAS  Google Scholar 

  34. 34.

    R.G. Jordan, Y. Liu, S.L. Qiu, B. Ginatempo, E. Bruno, G.M. Stocks, and W.A. Shelton: Electronic structures of disordered Ag–Mg alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 50(16), 11459 (1994).

    CAS  Article  Google Scholar 

  35. 35.

    W.E. Morgan, W.J. Stec, and J.R. Van Wazer: Inner-orbital binding-energy shifts of antimony and bismuth compounds. Inorg. Chem. 12(4), 953 (1973).

    CAS  Article  Google Scholar 

  36. 36.

    H.X. Zhong, Y.L Qiu, T.T. Zhang, X.F. Li, H.M. Zhang, and X.B. Chen: Bismuth nanodendrites as high performance electrocatalyst for selective conversion of CO2 to formate. J. Mater. Chem. A 4, 13746 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    V.I. Nefedov, M.N. Firsov, and I.S. Shaplygin: Electronic structures of MRhO2, MRh2O4, RhMO4 and Rh2MO6 on the basis of X-ray spectroscopy and ESCA data. J. Electron Spectrosc. Relat. Phenom. 26(1), 65 (1982).

    CAS  Article  Google Scholar 

  38. 38.

    M.K. Hota, M.K. Bera, and C.K. Maiti: Semicond: Flexible metal–insulator–metal capacitors on polyethylene terephthalate plastic substrates. Sci. Technol. 27(27), 105001 (2012).

    Google Scholar 

  39. 39.

    N. Tian, H.W. Huang, Y.X. Guo, Y. He, and Y.H. Zhang: Ag–C3N4/Bi2O2CO3 composite with high visible-light-driven photocatalytic activity for rhodamine B degradation. Appl. Surf. Sci. 322, 249 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    N. Sobana, M. Muruganadham, and M. Swaminathan: Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes. J. Mol. Catal. A: Chem. 258(1), 124 (2006).

    CAS  Article  Google Scholar 

  41. 41.

    H. Liu, L. Deng, C.C. Sun, J.Q. Li, and Z.F. Zhu: Titanium dioxide encapsulation of supported Ag nanoparticles on theporous silica bead for increased photocatalytic activity. Appl. Surf. Sci. 326, 82 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    G. Gyawali, R. Adhikari, B. Joshi, T.H. Kim, V. Rodríguezgonzález, and S.W. Lee: Sonochemical synthesis of solar-light-driven Ag–PbMoO4 photocatalyst. J. Hazard. Mater. 263(7480), 45 (2014).

    Google Scholar 

  43. 43.

    X.C. Zhang, Z. Luo, Y.T. Wang, and S.Y. Zhang: Synthesis of a novel visible-light-driven photocatalyst Ag/AgAlO2 composite. Chem. Lett. 45(11), 1288 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    W. Zhao, J.H. Li, Z.B. Wei, S.M. Wang, H. He, C. Sun, and S.G. Yang: Fabrication of a ternary plasmonic photocatalyst of Ag/AgVO3/RGO and its excellent visible-light photocatalytic activity. Appl. Catal., B 179, 9 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    J. Chen, S.H. Shen, P.H. Guo, M. Wang, J.Z. Su, D.M. Zhao, and L.J. Guo: Plasmonic Ag@SiO2 core/shell structure modified g-C3N4 with enhanced visible light photocatalytic activity. J. Mater. Res. 29(1), 64 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    X.J. Chen, F.G. Chen, F.L. Liu, X.D. Yan, W. Hu, G.B. Zhang, L.H. Tian, Q.H. Xia, and X.B. Chen: Ag nanoparticles/hematite mesocrystals superstructure composite: A facile synthesis and enhanced heterogeneous photo-fenton activity. Catal.: Sci. Technol. 6(12), 4184 (2016).

    CAS  Google Scholar 

  47. 47.

    Y.X. Wang, H.Q. Sun, H.M. Ang, M.O. Tadé, and S.B. Wang: 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism. Appl. Catal., B 164, 159 (2015).

    CAS  Article  Google Scholar 

  48. 48.

    S.C. Yan, S.B. Lv, Z.S. Li, and Z.G. Zou: Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans. 39, 1488 (2010).

    CAS  Article  Google Scholar 

  49. 49.

    H.R. He, S.W. Cao, and J.G. Yu: Recent advances in morphology control and surface modification of Bi-based photocatalysts. Acta Phys.–Chim. Sin. 32(12), 2841 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    X. Li, J.G. Yu, J.X. Low, Y.P. Fang, J. Xiao, and X.B. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2016).

    Article  CAS  Google Scholar 

  51. 51.

    J. Di, J.X. Xia, M.X. Ji, B. Wang, S. Yin, H. Xu, Z.G. Chen, and H.M. Li: Carbon quantum dots induced ultrasmall BiOI nanosheets with assembled hollow structures for broad spectrum photocatalytic activity and mechanism insight. Langmuir 32(8), 2075 (2016).

    CAS  Article  Google Scholar 

  52. 52.

    S.Q. Luo, J.W. Chen, Z.H. Huang, C. Liu, and M.H. Fang: Controllable synthesizing of BiOI/TiO2 heterostructured nanofibers with highly exposed (110) BiOI facets for enhanced photocatalytic activity. ChemCatChem 8(24), 3780 (2016).

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the Fundamental Research Funds for the Central Universities (Grant No. 53200859638) and the National Natural Science Foundation of China (NSFC Grant No. 51572245).

Author information



Corresponding authors

Correspondence to Minghao Fang or Zhaohui Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhu, H., Wang, M. et al. A new Ag/Bi7Ta3O18 plasmonic photocatalyst with a visible-light-driven photocatalytic activity. Journal of Materials Research 32, 3650–3659 (2017). https://doi.org/10.1557/jmr.2017.299

Download citation