Stabilizing and scaling up carbon-based perovskite solar cells

Abstract

Organometal trihalide perovskite solar cells (PSCs) have sparked a frantic excitement in the scientific community because they can achieve high power conversion efficiencies (PCEs) even when fabricated by low-cost solution-processing technologies. However, the poor stability of PSCs has seriously hindered their commercialization. Among various kinds of PSCs, carbon-based PSCs without hole transport materials (C-PSCs) seem to be the most promising for addressing the stability issue because carbon materials are stable, inert to ion migration, and inherently water-resistant. Concurrent with the steady rise in PCE of C-PSCs, great progresses have also been attained on the device stability and scaling-up fabrication of C-PSCs, which have well signified the possible commercialization of PSCs in the near future. In this review, we will summarize these progresses with a view of exposing the promising prospect. We start by collating recent stability testing results of C-PSCs with reference to those of HTM-PSCs. Then, we update the research status on large-scale C-PSCs and their associated scalable fabrication technologies. Finally, we identify main issues to be addressed alongside future research directions.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

References

  1. 1.

    NREL: (2017). Available at: https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed July, 2017).

  2. 2.

    X. Li, D. Bi, C. Yi, J.D. Decoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, and M. Gratzel: A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok: Solar cells high-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Bai, H.N. Chen, S. Xiao, Q.F. Xue, T. Zhang, Z.L. Zhu, Q. Li, C. Hu, Y. Yang, Z.C. Hu, F. Huang, K.S. Wong, H.L. Yip, and S.H. Yang: Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Adv. Funct. Mater. 26, 2950 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    K. Yan, M. Long, T. Zhang, Z. Wei, H. Chen, S. Yang, and J. Xu: Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    J.H. Im, I.H. Jang, N. Pellet, M. Gratzel, and N.G. Park: Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    T. Zhang, H. Chen, Y. Bai, S. Xiao, L. Zhu, C. Hu, Q. Xue, and S. Yang: Understanding the relationship between ion migration and the anomalous hysteresis in high-efficiency perovskite solar cells: A fresh perspective from halide substitution. Nano Energy 26, 620 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.P. Correa Baena, J.D. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Gratzel, and A. Hagfeldt: Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).

    Article  Google Scholar 

  11. 11.

    D. Bi, C. Yi, J. Luo, J-D. Décoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel: Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Y. Zhou and K. Zhu: Perovskite solar cells shine in the “valley of the sun”. ACS Energy Lett. 1(1), 64 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    S.Y. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G.C. Xing, T.C. Sum, and Y.M. Lam: The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    C.S. Ponseca, Jr., T.J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.P. Wolf, and V. Sundstrom: Organometal halide perovskite solar cell materials rationalized: Ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136, 5189 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang: Electron-hole diffusion lengths >175 mum in solution-grown CH3NH3PbI3 single crystals. Science 347, 967 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, and O.M. Bakr: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    K-G. Lim, S. Ahn, Y-H. Kim, Y. Qi, and T-W. Lee: Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic–inorganic hybrid perovskite solar cells. Energy Environ. Sci. 9, 932 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, and T.C. Sum: Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    V. D’Innocenzo, G. Grancini, M.J. Alcocer, A.R. Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H.J. Snaith, and A. Petrozza: Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).

    Article  CAS  Google Scholar 

  21. 21.

    T.A. Berhe, W.N. Su, C.H. Chen, C.J. Pan, J.H. Cheng, H.M. Chen, M.C. Tsai, L.Y. Chen, A.A. Dubale, and B.J. Hwang: Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci. 9, 323 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    P. Docampo and T. Bein: A long-term view on perovskite optoelectronics. Acc. Chem. Res. 49, 339 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    M. Shahbazi and H. Wang: Progress in research on the stability of organometal perovskite solar cells. J. Sol. Energy 123, 74 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    D. Wang, M. Wright, N.K. Elumalai, and A. Uddin: Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    M.D. Ye, X.D. Hong, F.Y. Zhang, and X.Y. Liu: Recent advancements in perovskite solar cells: Flexibility, stability and large scale. J. Mater. Chem. A 4, 6755 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    H. Back, G. Kim, J. Kim, J. Kong, T.K. Kim, H. Kang, H. Kim, J. Lee, S. Lee, and K. Lee: Achieving long-term stable perovskite solar cells via ion neutralization. Energy Environ. Sci. 9, 1258 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    K. Domanski, J-P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, and M. Grätzel: Not all that glitters is gold: Metal migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, and M. Gratzel: Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han: Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013).

    Article  Google Scholar 

  30. 30.

    A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel, and H. Han: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Z. Wei, H. Chen, K. Yan, and S. Yang: Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem. 53, 13239 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, and L. Sun: Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Appl. Mater. Interfaces 6, 16140 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    H.N. Chen, Z.H. Wei, X.L. Zheng, and S.H. Yang: A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy 15, 216 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Z.H. Wei, X.L. Zheng, H.N. Chen, X. Long, Z.L. Wang, and S.H. Yang: A multifunctional C plus epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments. J. Mater. Chem. A 3, 16430 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    W.A. Laban and L. Etgar: Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6, 3249 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    Z. Ku, X. Xia, H. Shen, N.H. Tiep, and H.J. Fan: A mesoporous nickel counter electrode for printable and reusable perovskite solar cells. Nanoscale 7, 13363 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Z.H. Wei, K.Y. Yan, H.N. Chen, Y. Yi, T. Zhang, X. Long, J.K. Li, L.X. Zhang, J.N. Wang, and S.H. Yang: Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy Environ. Sci. 7, 3326 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    H. Chen, Z. Wei, K. Yan, Y. Yi, J. Wang, and S. Yang: Liquid phase deposition of TiO2 nanolayer affords CH3NH3PbI3/nanocarbon solar cells with high open-circuit voltage. Faraday Discuss. 176, 271 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    H. Chen and S. Yang: High-quality perovskite in thick scaffold: A core issue for hole transport material-free perovskite solar cells. Sci. Bull. 61, 1680 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, and T. Ma: Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 5, 3241 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    H. Chen and S. Yang: Carbon-based perovskite solar cells without hole transport materials: The front runner to the market?Adv. Mater. 29, 1603994 (2017).

    Article  CAS  Google Scholar 

  42. 42.

    Y. Rong, X. Hou, Y. Hu, A. Mei, L. Liu, P. Wang, and H. Han: Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nat. Commun. 8, 14555 (2017).

    Article  Google Scholar 

  43. 43.

    H. Zhang, H. Wang, S.T. Williams, D. Xiong, W. Zhang, C-C. Chueh, W. Chen, and A.K.Y. Jen: SrCl2 derived perovskite facilitating a high efficiency of 16% in hole-conductor-free fully printable mesoscopic perovskite solar cells. Adv. Mater. 29, 1606608 (2017).

    Article  CAS  Google Scholar 

  44. 44.

    X. Zheng, H. Chen, Q. Li, Y. Yang, Z. Wei, Y. Bai, Y. Qiu, D. Zhou, K.S. Wong, and S. Yang: Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells. Nano Lett. 17, 2496 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    H. Chen, X. Zheng, Q. Li, Y. Yang, S. Xiao, C. Hu, Y. Bai, T. Zhang, K.S. Wong, and S. Yang: An amorphous precursor route to the conformable oriented crystallization of CH3NH3PbBr3 in mesoporous scaffolds: Toward efficient and thermally stable carbon-based perovskite solar cells. J. Mater. Chem. A 4, 12897 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    H.N. Chen, Z.H. Wei, H.X. He, X.L. Zheng, K.S. Wong, and S.H. Yang: Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Adv. Energy Mater. 6, 1502087 (2016).

    Article  CAS  Google Scholar 

  47. 47.

    X. Chang, W. Li, H. Chen, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu, X. Zheng, Y. Yang, and S. Yang: Colloidal precursor-induced growth of ultra-even CH3NH3PbI3 for high-performance paintable carbon-based perovskite solar cells. ACS Appl. Mater. Interfaces 8, 30184 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Y. Sheng, Y. Hu, A. Mei, P. Jiang, X. Hou, M. Duan, L. Hong, Y. Guan, Y. Rong, Y. Xiong, and H. Han: Enhanced electronic properties in CH3NH3PbI3 via LiCl mixing for hole-conductor-free printable perovskite solar cells. J. Mater. Chem. A 4, 16731 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    C.Y. Chan, Y.Y. Wang, G.W. Wu, and E.W.G. Diau: Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors. J. Mater. Chem. A 4, 3872 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Gratzel, and L. Han: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944 (2015).

    CAS  Article  Google Scholar 

  51. 51.

    X. Li, M. Tschumi, H.W. Han, S.S. Babkair, R.A. Alzubaydi, A.A. Ansari, S.S. Habib, M.K. Nazeeruddin, S.M. Zakeeruddin, and M. Gratzel: Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol. 3, 551 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    A.K. Baranwal, S. Kanaya, T.A.N. Peiris, G. Mizuta, T. Nishina, H. Kanda, T. Miyasaka, H. Segawa, and S. Ito: 100 °C thermal stability of printable perovskite solar cells using porous carbon counter electrodes. ChemSusChem 9, 2517 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Y. Hu, S. Si, A. Mei, Y. Rong, H. Liu, X. Li, and H. Han: Stable large-area (10 × 10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Sol. RRL 1, 1600019 (2017).

    Article  CAS  Google Scholar 

  54. 54.

    F. Bella, G. Griffini, J-P. Correa-Baena, G. Saracco, M. Grätzel, A. Hagfeldt, S. Turri, and C. Gerbaldi: Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354, 203 (2016).

    CAS  Article  Google Scholar 

  55. 55.

    H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. Garcia de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.H. Lu, Z. Yang, S. Hoogland, and E.H. Sargent: Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722 (2017).

    CAS  Article  Google Scholar 

  56. 56.

    M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, and M. Gratzel: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    H. Tsai, W. Nie, J-C. Blancon, C.C. Stoumpos, R. Asadpour, B. Harutyunyan, A.J. Neukirch, R. Verduzco, J.J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M.A. Alam, G. Gupta, J. Lou, P.M. Ajayan, M.J. Bedzyk, M.G. Kanatzidis, and A.D. Mohite: High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312 (2016).

    CAS  Article  Google Scholar 

  58. 58.

    S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, and S.I. Seok: Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167 (2017).

    CAS  Article  Google Scholar 

  59. 59.

    Z.H. Wei, H.N. Chen, K.Y. Yan, X.L. Zheng, and S.H. Yang: Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J. Mater. Chem. A 3, 24226 (2015).

    CAS  Article  Google Scholar 

  60. 60.

    Z.H. Yu, B.L. Chen, P. Liu, C.L. Wang, C.H. Bu, N.A. Cheng, S.H. Bai, Y.F. Yan, and X.Z. Zhao: Stable organic–inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering. Adv. Funct. Mater. 26, 4866 (2016).

    CAS  Article  Google Scholar 

  61. 61.

    A. Priyadarshi, L.J. Haur, P. Murray, D. Fu, S. Kulkarni, G. Xing, T.C. Sum, N. Mathews, and S.G. Mhaisalkar: A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability. Energy Environ. Sci. 9, 3687 (2016).

    CAS  Article  Google Scholar 

  62. 62.

    S-G. Li, K-J. Jiang, M-J. Su, X-P. Cui, J-H. Huang, Q-Q. Zhang, X-Q. Zhou, L-M. Yang, and Y-L. Song: Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J. Mater. Chem. A 3, 9092 (2015).

    CAS  Article  Google Scholar 

  63. 63.

    K. Hwang, Y-S. Jung, Y-J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D-Y. Kim, and D. Vak: Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241 (2015).

    CAS  Article  Google Scholar 

  64. 64.

    C. Longhua, L. Lusheng, W. Jifeng, D. Bin, G. Lili, and F. Bin: Large area perovskite solar cell module. J. Semicond. 38, 014006 (2017).

    Article  CAS  Google Scholar 

  65. 65.

    Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N.P. Padture, and G. Cui: Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chem. 127, 9841 (2015).

    Article  Google Scholar 

  66. 66.

    S. Pang, Y. Zhou, Z. Wang, M. Yang, A.R. Krause, Z. Zhou, K. Zhu, N.P. Padture, and G. Cui: Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid-gas interaction between HPbI3–CH3NH2 precursor pair. J. Am. Chem. Soc. 138, 750 (2016).

    CAS  Article  Google Scholar 

  67. 67.

    Y. Zhao and K. Zhu: Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia. Chem. Commun. 50, 1605 (2014).

    CAS  Article  Google Scholar 

  68. 68.

    Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503 (2014).

    CAS  Article  Google Scholar 

  69. 69.

    Y. Wu, W. Chen, Y. Yue, J. Liu, E. Bi, X. Yang, A. Islam, and L. Han: Consecutive morphology controlling operations for highly reproducible mesostructured perovskite solar cells. ACS Appl. Mater. Interfaces 7, 20707 (2015).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is financially supported by the Young Talent of “Zhuoyue” Program of Beihang University, the National Natural Science Foundation of China (Nos. 51371020 and 21603010), the HK-RGC General Research Funds (GRF Nos. 16312216 and 16300915), and the HK Innovation and Technology Fund (ITS/219/16).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Haining Chen or Shihe Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Yang, S. Stabilizing and scaling up carbon-based perovskite solar cells. Journal of Materials Research 32, 3011–3020 (2017). https://doi.org/10.1557/jmr.2017.294

Download citation