Effects of minor Y addition on microstructure and mechanical properties of Mg-Nd-Zn-Zr alloy

Abstract

Microstructure and mechanical properties of Mg-0.43Nd-xY-0.08Zn-0.11Zr (x = 0, 0.03, 0.06, and 0.12 at.%) alloys were investigated. The results indicated that Mg24Y5 phase was formed in the as-cast Y-containing alloys, the grains were refined and the amount of needle-like Mg12Nd phase in the α-Mg grain interior was increased with increasing Y addition. After solution treatment, the Mg24Y5 phase and needle-like Mg12Nd phase nearly completely dissolved into the α-Mg matrix and long-rod-like Zn2Zr3 phase occurred. The amount of Zn2Zr3 phase was increased with increasing Y content after age treatment. Mg-0.43Nd-0.12Y-0.08Zn-0.11Zr alloy exhibited the best combination of strength and elongation in all conditions, especially in the temperature range of 200–300 °C, and an Arrhenius model was established to study the plastic flow behavior. The improvement in mechanical properties was attributed to the grain refining, solution strengthening and enhanced precipitation hardening of Zn2Zr3 phase and β-type phase.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    C. Antion, P. Donnadieu, F. Perrard, A. Deschampa, C. Tassin, and A. Pisch: Hardening precipitation in a Mg–4Y–3RE alloy. Acta Mater. 51, 5335 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    L. Yuan, W.C. Shi, W.M. Jiang, Z. Zhao, and D.B. Shan: Effect of heat treatment on elevated temperature tensile and creep properties of the extruded Mg–6Gd–4Y–Nd–0.7Zr alloy. Mater. Sci. Eng., A 658, 339 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    L. Zhang, J.H. Zhang, C. Xu, S.J. Liu, Y.F. Jiao, L.J. Xu, Y.B. Wang, J. Meng, R.Z. Wu, and M.L. Zhang: Investigation of high-strength and superplastic Mg–Y–Gd–Zn alloy. Mater. Des. 61, 168 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Y.L. Li, G.H. Wu, A.T. Chen, H.R.J. Nodooshan, W.C. Liu, Y.X. Wang, and W.J. Ding: Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg–Gd–Y–Zr magnesium alloys in the product form of a large structural casting. J. Mater. Res. 30, 3461 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    H.R.J. Nodooshan, W.C. Liu, G.H. Wu, W.J. Ding, and R. Mahmudi: Effect of Gd addition on the wear behavior of Mg–x Gd–3Y–0.5 Zr alloys. J. Mater. Res. 31, 1133 (2016).

    Article  Google Scholar 

  6. 6.

    H.Z. Li, F. Lv, X.P. Liang, Y.L. Qi, Z.X. Zhu, and K.L. Zhang: Effect of heat treatment on microstructures and mechanical properties of a cast Mg–Y–Nd–Zr alloy. Mater. Sci. Eng., A 667, 409 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Z.L. Ning, J.Y. Yi, M. Qian, H.C. Sun, F.Y. Cao, H.H. Liu, and J.F. Sun: Microstructure and elevated temperature mechanical and creep properties of Mg–4Y–3Nd–0.5Zr alloy in the product form of a large structural casting. Mater. Des. 60, 218 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    P.H. Fu, L.M. Peng, H.Y. Jiang, J.W. Chang, and C.Q. Zhai: Effects of heat treatments on the microstructures and mechanical properties of Mg–3Nd–0.2Zn–0.4Zr (wt%) alloy. Mater. Sci. Eng., A 486, 183 (2008).

    Article  Google Scholar 

  9. 9.

    Z.M. Li, P.H. Fu, L.M. Peng, Y.X. Wang, H.Y. Jiang, and G.H. Wu: Comparison of high cycle fatigue behaviors of Mg–3Nd–0.2Zn–Zr alloy prepared by different casting processes. Mater. Sci. Eng., A 579, 170 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    A. Sanaty-Zadeh, A.A. Luo, and D.S. Stone: Comprehensive study of phase transformation in age-hardening of Mg–3Nd–0.2Zn by means of scanning transmission electron microscopy. Acta Mater. 94, 294 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Z.J. Su, C.M. Liu, Y.C. Wang, and X. Shu: Effect of Y content on microstructure and mechanical properties of Mg–2.4Nd–0.2Zn–0.4Zr alloys. Mater. Sci. Technol. 29, 148 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    G.S. Hu, B. Xing, F.L. Huang, M.P. Zhong, and D.F. Zhang: Effect of Y addition on the microstructures and mechanical properties of as-aged Mg–6Zn–1Mn–4Sn (wt%) alloy. J. Alloy Compd 689, 326 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    J. Zhao, J. Zhang, W.C. Liu, G.H. Wu, and L. Zhang: Effect of Y content on microstructure and mechanical properties of as-cast Mg–8Li–3Al–2Zn alloy with duplex structure. Mater. Sci. Eng., A 650, 240 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    J.H. Li, G. Sha, W.Q. Jie, and S.P. Ringer: Precipitation microstructure and their strengthening effects of an Mg–2.8Nd–0.6Zn–0.4Zr alloy with a 0.2 wt% Y addition. Mater. Sci. Eng., A 538, 272 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Z.M. Li, P.H. Fu, L.M. Peng, Y.X. Wang, and H.Y. Jiang: Strengthening mechanisms in solution treated Mg–y Nd–z Zn–x Zr alloy. J. Mater. Sci. 48, 6367 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    R. Wilson, C.J. Bettles, B.C. Muddle, and J.F. Nie: Precipitation hardening in Mg–3 wt% Nd (–Zn) casting alloys. Mater. Sci. Forum 419, 267 (2003).

    Article  Google Scholar 

  17. 17.

    P.H. Fu, L.M. Peng, H.Y. Jiang, L. Ma, and C.Q. Zhai: Chemical composition optimization of gravity cast Mg–y Nd–x Zn–Zr alloy. Mater. Sci. Eng., A 496, 177 (2008).

    Article  Google Scholar 

  18. 18.

    J.F. Nie: Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A 43, 3891 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    I. Toda-Caraballo, E.I. Galindo-Nava, and P.E.J. Rivera-Díaz-del-Castillo: Understanding the factors influencing yield strength on Mg alloys. Acta Mater. 75, 287 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    R.L. Fleischer: Substitutional solution hardening. Acta Metall. Mater. 11, 203 (1963).

    CAS  Article  Google Scholar 

  21. 21.

    R. Labusch: A statistical theory of solid solution hardening. Phys. Status Solidi B 41, 659 (1970).

    Article  Google Scholar 

  22. 22.

    C. Do Lee: Effect of grain size on the tensile properties of magnesium alloy. Mater. Sci. Eng., A 459, 355 (2007).

    Article  Google Scholar 

  23. 23.

    L. Gao, R.S. Chen, and E.H. Han: Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J. Alloy Compd. 481, 379 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    A. Akhtar and E. Teghtsoonian: Substitutional solution hardening of magnesium single crystals. Philos. Mag. 25, 897 (1972).

    CAS  Article  Google Scholar 

  25. 25.

    S.J. Liu, G.Y. Yang, S.F. Luo, and W.Q. Jie: Microstructure evolution during heat treatment and mechanical properties of Mg–2.49Nd–1.82Gd–0.19Zn–0.4Zr cast alloy. Mater. Charact. 107, 334 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    C.P. Tang, W.H. Liu, Y.Q. Chen, X. Liu, and Y.L. Deng: Effects of thermal treatment on microstructure and mechanical properties of a Mg–Gd-based alloy plate. Mater. Sci. Eng., A 659, 63 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    H.Y. Yue, P.H. Fu, Z.M. Li, and L.M. Peng: Tensile crack initiation behavior of cast Mg–3Nd–0.2Zn–0.5Zr magnesium alloy. Mater. Sci. Eng., A 673, 458 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    S.R. Agnew, M.G. Yoo, and C.N. Tome: Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 49, 4277 (2001).

    CAS  Article  Google Scholar 

  29. 29.

    X.W. Zheng, A.A. Luo, J. Dong, A.K. Sachdev, and W.J. Ding: Plastic flow behavior of a high-strength magnesium alloy NZ30K. Mater. Sci. Eng., A 532, 616 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    H.R.J. Nodooshan, G.H. Wu, W.C. Liu, G.L. Wei, Y.L. Li, and S. Zhang: Effect of Gd content on high temperature mechanical properties of Mg–Gd–Y–Zr alloy. Mater. Sci. Eng., A 651, 840 (2016).

    Article  Google Scholar 

  31. 31.

    I.A. Maksoud, H. Ahmed, and J. Rödel: Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy. Mater. Sci. Eng., A 504, 40 (2009).

    Article  Google Scholar 

  32. 32.

    K. Hirai, H. Somekawa, Y. Takigawa, and K. Higashi: Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Mater. Sci. Eng., A 403, 276 (2005).

    Article  Google Scholar 

  33. 33.

    A. Galiyev, R. Kaibyshev, and G. Gottstein: Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater. 49, 1199 (2001).

    CAS  Article  Google Scholar 

  34. 34.

    M.R. Barnett: Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31. J. Light Met. 1, 167 (2001).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by National Key Research and Development Program of China (No. 2016YFB0701205), Science Innovation Foundation of Shanghai Academy of Spaceflight Technology (Nos. SAST2015047 and SAST2016048).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guohua Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wu, G., Liu, W. et al. Effects of minor Y addition on microstructure and mechanical properties of Mg-Nd-Zn-Zr alloy. Journal of Materials Research 32, 3712–3722 (2017). https://doi.org/10.1557/jmr.2017.277

Download citation