Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C

Abstract

The present investigation aims to explore the evolution of microstructure and mechanical properties in Zn–Cu–Ti alloys during severe hot-rolling deformation. Twin deformation and dynamic recrystallisation are two important deformation modes of Zn–Cu–Ti alloys during hot rolling at 300 °C. Twin deformation and dynamic recrystallisation (DRX) appear one after the other. They not only consume the deformation stored energy but also inhibit initiation and growth of cracks. The elongation rate of Zn–Cu–Ti alloys has a rising trend with the increase in hot-rolling deformation. It is mainly due to grain refinement caused by increasing the ratio of DRX and twin deformation. The tensile strength of Zn–Cu–Ti alloys is found to decrease with the increase in hot-rolling deformation. This is because the solid-solution strengthening effect of copper is weakened by more deformation-induced precipitation of ε phase (CuZn5). The solid-solution strengthening effect of copper plays an important role in the strengthening effect of Zn–Cu–Ti alloys.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

References

  1. 1.

    A. Fata, G. Faraji, M.M. Mashhadi, and V. Tavakkoli: Hottensile deformation and fracture behavior of ultrafine-grained AZ31 magnesium alloy processed by severe plastic deformation. Mater. Sci. Eng., A 674, 9 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    F. Du, S. Yadav, C. Moreno, T.G. Murthy, and C. Saldana: Incipient straining in severe plastic deformation methods. J. Mater. Res. 29(5), 718 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    W.J. Huang, Z.Y. Liu, M. Lin, X.W. Zhou, L. Zhao, A.L. Ning, and S.M. Zeng: Reprecipitation behavior in Al–Cu binary alloy after severe plastic deformation-induced dissolution of θ′ particles. Mater. Sci. Eng., A 546, 26 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    T. Li, D. Kent, G. Sha, M.S. Dargusch, and J.M. Cairney: Precipitation of the α-phase in an ultrafine grained beta-titanium alloy processed by severe plastic deformation. Mater. Sci. Eng., A 605, 144 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi: Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion. Mater. Sci. Eng., A 396(1–2), 341 (2005).

    Article  Google Scholar 

  6. 6.

    L.M. Yan, J. Shen, J.P. Li, Z.B. Li, and Z.L. Tang: Dynamic recrystallization of 7055 aluminum alloy during hot deformation. Mater. Sci. Forum 650, 295 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    J. Liu, Z. Cui, and C. Li: Modelling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B. Comput. Mater. Sci. 41(3), 375 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    S.V. Murty, S. Torizuka, K. Nagai, T. Kitai, and Y. Kogo: Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon steel. Scr. Mater. 53(6), 763 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    A. Gobrecht, R. Bendoula, J.M. Roger, and V. Bellon-Maurel: Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer–Lambert law absorbance of highly scattering materials. Anal. Chim. Acta 853(1), 486 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    J.S. Pan: Foundations of Materials Science (Tsinghua University Press, Bejing, 1998).

    Google Scholar 

  11. 11.

    Z.S. Hou and G.Z. Lu: Principles of Metallography (Shanghai Science and Technology Press, Shanghai, 1995).

    Google Scholar 

  12. 12.

    S. Gourdet and F. Montheillet: A model of continuous dynamic recrystallization. Acta Mater. 51(9), 2685 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    Y.Q. Ning and Z.K. Yao: Recrystallization nucleation mechanism of FGH4096 powder metallugry superalloy. Acta Metall. Sin. 48(8), 1005 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    K. Jiang and S.J. Sun: Research of dynamic recrystallization critical criterion and mechanism. Nonferrous Met. Process. 38(1), 25 (2010).

    Google Scholar 

  15. 15.

    A. Serra and D.J. Bacon: Computer simulation of twinning dislocation in magnesium using a many-body potential. Philos. Mag. A 63(5), 1001 (1991).

    CAS  Article  Google Scholar 

  16. 16.

    E.I. Galindo-Nava and P.E.J. Rivera-Díaz-Del-Castillo: Grain size evolution during discontinuous dynamic recrystallization. Scr. Mater. 72–73(1), 1 (2014).

    Article  Google Scholar 

  17. 17.

    A. Momeni, G.R. Ebrahimi, M. Jahazi, and P. Bocher: Microstructure evolution at the onset of discontinuous dynamic recrystallization: A physics-based model of subgrain critical size. Alloys Compd. 587(7), 199 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Z.X. Wu, Y.W. Zhang, and D.J. Srolovitz: Dislocation–twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals. Acta Mater. 57(15), 4508 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskés, and S.N. Mathaudhu: Dislocation–twin interactions in nanocrystalline fcc metals. Acta Mater. 59(2), 812 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    J. Tu: Deformation Twins and Twinning Mechanism of Hexagonal Close-Packed Met Under Dynamic Plastic Deformation (Chongqing University, Chongqing, 2013).

    Google Scholar 

  21. 21.

    A. Belyakov, H. Miura, and T. Sakai: Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel. Mater. Sci. Eng., A 255(1–2), 139 (1998).

    Article  Google Scholar 

  22. 22.

    H. Miura, T. Sakai, H. Hamaji, and J.J. Jonas: Preferential nucleation of dynamic recrystallization at triple junctions. Scr. Mater. 50(1), 65 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    Y.N. Wang and J.C. Huang: Review: Texture analysis in hexagonal materials. Mater. Chem. Phys. 81(1), 11 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    I. Ulacia, N.V. Dudamell, F. Gálvez, S. Yi, M.T. Pérez-Prado, and I. Hurtado: Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. Acta Mater. 58(8), 2988 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    S.B. Yi, C.H.J. Davies, H.G. Brokmeier, R.E. Bolmaro, K.U. Kainer, and J. Homeyer: Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading. Acta Mater. 54(2), 549 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51(7), 2055 (2003).

    CAS  Article  Google Scholar 

  27. 27.

    J.R. Chen and C.J. Li: Solid State Phase Transition in Metals and Alloys (Metallurgical Industry Press, Bejing, 1997).

    Google Scholar 

  28. 28.

    J. Li: Study on the Microstructure Evolution and Precipitation Behaviors during Hot Charging Process for HSLA Steel (Chongqing University, Chongqing, 2013).

    Google Scholar 

  29. 29.

    D.K. Shi: Foundations of Materials Science (Machinery Industry Press, Bejing, 2003).

    Google Scholar 

  30. 30.

    P. Liu: Study of the Dislocation Dynamics in the Plastic Deformation (Hefei University of Technology, Hefei, 2010).

    Google Scholar 

  31. 31.

    H.J. Wang, B. Fu, L. Xiang, and S.T. Chou: Nucleation mechanism of precipitate of AlN in ferrite phase of Hi–B steel. J. Iron Steel Res. 27(10), 40 (2015).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the following projects: State Key Program of National Natural Science Foundation of China (No. U1502274), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (No. C20150014), Program for Innovation Research Team (in Science and Technology) in Universities of Henan Province (No. 14IRTSTHN007) and Key Scientific Program of Henan Province (No. 16A430004). We are indebted to the anonymous reviewers for their valuable comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kexing Song.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Liang, S., Song, K. et al. Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C. Journal of Materials Research 32, 3146–3155 (2017). https://doi.org/10.1557/jmr.2017.275

Download citation