Skip to main content
Log in

On the competition between the stress-induced formation of martensite and dislocation plasticity during crack propagation in pseudoelastic NiTi shape memory alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present work addresses the competition between dislocation plasticity and stress-induced martensitic transformations in crack affected regions of a pseudoelastic NiTi miniature compact tension specimen. For this purpose X-ray line profile analysis was performed after fracture to identify dislocation densities and remnant martensite volume fractions in regions along the crack path. Special emphasis was placed on characterizing sub fracture surface zones to obtain depth profiles. The stress affected zone in front of the crack-tip is interpreted in terms of a true plastic zone associated with dislocation plasticity and a pseudoelastic zone where stress-induced martensite can form. On unloading, most of the stress-induced martensite transforms back to austenite but a fraction of it is stabilized by dislocations in both, the irreversible martensite and the surrounding austenite phase. The largest volume fraction of the irreversible or remnant martensite along with the highest density of dislocations in this phase was found close to the primary crack-tip. With increasing distance from the primary crack-tip both, the dislocation density and the volume fraction of irreversible martensite decrease to lower values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. K. Otsuka and C.M. Waymann: Shape Memory Materials (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  2. H. Funakubo: Shape Memory Alloys (Gordon and Breach, New York, 1987).

    Google Scholar 

  3. J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, and G. Eggeler: Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 58, 3444 (2010).

    Article  CAS  Google Scholar 

  4. J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, and G. Eggeler: On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater. 90, 213 (2015).

    Article  CAS  Google Scholar 

  5. J. Van Humbeeck: Non-medical applications of shape memory alloys. Mater. Sci. Eng., A 273–275, 134 (1999).

    Article  Google Scholar 

  6. T. Duerig, A. Pelton, and D. Stöckel: An overview of nitinol medical applications. Mater. Sci. Eng., A 273–275, 149 (1999).

    Article  Google Scholar 

  7. V.G. Pushin, V.V. Stolyarov, R.Z. Valiev, T.C. Lowe, and Y.T. Zhu: Nanostructured TiNi-based shape memory alloys processed by severe plastic deformation. Mater. Sci. Eng., A 410, 386 (2005).

    Article  CAS  Google Scholar 

  8. R. Valiev, D. Gunderov, E. Prokofiev, V. Pushin, and Y. Zhu: Nanostructuring of TiNi alloy by SPD processing for advanced properties. Mater. Trans. 49, 97 (2008).

    Article  CAS  Google Scholar 

  9. C. Grossmann, J. Frenzel, V. Sampath, T. Depka, A. Oppenkowski, C. Somsen, K. Neuking, W. Theisen, and G. Eggeler: Processing and property assessment of NiTi and NiTiCu shape memory actuator springs. Materialwiss. Werkstofftech. 39, 499 (2008).

    Article  CAS  Google Scholar 

  10. S.W. Robertson, A.R. Pelton, and R.O. Ritchie: Mechanical fatigue and fracture of Nitinol. Int. Mater. Rev. 57, 1 (2012).

    Article  CAS  Google Scholar 

  11. M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-Micklich, R. Steegmüller, M. Wohlschlögel, H. Mughrabi, and G. Eggeler: Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater. 61, 3667 (2013).

    Article  CAS  Google Scholar 

  12. M. Launey, S.W. Robertson, W. Scott, L. Vien, K. Senthilnathan, Ch. Karthikeyan, P. Chintapalli, and A.R. Pelton: Influence of microstructural purity on the bending fatigue behavior of VAR-melted superelastic Nitinol. J. Mech. Behav. Biomed. Mater. 34, 181 (2014).

    Article  CAS  Google Scholar 

  13. S. Fähler, U.K. Rößler, O. Kastner, J. Eckert, G. Eggeler, H. Emmerich, P. Entel, S. Müller, E. Quandt, and K. Albe: Caloric effects in ferroic materials: New concepts for cooling. Adv. Eng. Mater. 14, 10 (2012).

    Article  CAS  Google Scholar 

  14. T. Baxevanis and D.C. Lagoudas: Fracture mechanics of shape memory alloys: Review and perspectives. Int. J. Fract. 191, 191 (2015).

    Article  CAS  Google Scholar 

  15. S. Gollerthan, D. Herberg, A. Baruj, and G. Eggeler: Compact tension testing of martensitic/pseudoplastic NiTi shape memory alloys. Mater. Sci. Eng., A 481, 156 (2008).

    Article  CAS  Google Scholar 

  16. S. Gollerthan, M.L. Young, A. Baruj, J. Frenzel, W.W. Schmahl, and G. Eggeler: Fracture mechanics and microstructure in NiTi shape memory alloys. Acta Mater. 57, 2015 (2009).

    Google Scholar 

  17. S. Gollerthan, M.L. Young, K. Neuking, U. Ramamurty, and G. Eggeler: Direct physical evidence for the back-transformation of stress-induced martensite in the vicinity of cracks in pseudoelastic NiTi shape memory alloys. Acta Mater. 57, 5892 (2009).

    Article  CAS  Google Scholar 

  18. C. Maletta, L. Bruno, P. Corigliano, V. Crupi, and E. Guglielmino: Crack-tip thermal and mechanical hysteresis in shape memory alloys under fatigue loading. Mater. Sci. Eng., A 616, 281 (2014).

    Article  CAS  Google Scholar 

  19. M.L. Young, S. Gollerthan, A. Baruj, J. Frenzel, W.W. Schmahl, and G. Eggeler: Strain mapping of crack extension in pseudoelastic NiTi shape memory alloys during static loading. Acta Mater. 61, 5800 (2013).

    Article  CAS  Google Scholar 

  20. E. Sgambitterra, C. Maletta, and F. Furgiuele: Investigation on crack tip transformation in NiTi alloys: Effect of the temperature. Shape Mem. Superelastic 1, 275 (2015).

    Article  Google Scholar 

  21. T. Baxevanis, Y. Chemisky, and D.C. Lagoudas: Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys. Smart Mater. Struct. 21, 094012 (2012).

    Article  Google Scholar 

  22. T. Baxevanis, A.F. Parrinello, and D.C. Lagoudas: On the fracture toughness enhancement due to stress-induced phase transformation in shape memory alloys. Int. J. Plast. 50, 158 (2013).

    Article  CAS  Google Scholar 

  23. T. Baxevanis, C.M. Landis, and D.C. Lagoudas: On the fracture toughness of pseudoelastic shape memory alloys. J. Appl. Mech. 81, 041005 (2014).

    Article  Google Scholar 

  24. T. Baxevanis, C.M. Landis, and D.C. Lagoudas: On the effect of latent heat on the fracture toughness of pseudoelastic shape memory alloys. J. Appl. Mech. 81, 101006 (2014).

    Article  Google Scholar 

  25. G. Stam and E. Giessen: Effect of reversible phase transformations on crack growth. Mech. Mater. 21, 51 (1995).

    Article  Google Scholar 

  26. Y. Freed and L. Banks-Sills: Crack growth resistance of shape memory alloys by means of a cohesive zone model. J. Mech. Phys. Solids 55, 2157 (2007).

    Article  CAS  Google Scholar 

  27. T. Ungár, S. Ott, P.G. Sanders, A. Borbély, and J.R. Weertman: Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis. Acta Mater. 46, 3693 (1998).

    Article  Google Scholar 

  28. T. Ungár, I. Dragomir, Á. Révész, and A. Borbély: The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 34, 298 (1999).

    Article  Google Scholar 

  29. G. Ribárik and T. Ungár: Characterization of the microstructure in random and textured polycrystals and single crystals by diffraction line profile analysis. Mater. Sci. Eng., A 528, 112 (2010).

    Article  CAS  Google Scholar 

  30. T. Ungár, L. Balogh, and G. Ribárik: Defect-related physical-profile-based X-ray and neutron line profile analysis. Metall. Mater. Trans. A 41, 1202 (2010).

    Article  CAS  Google Scholar 

  31. G. Ribárik, B. Jóni, and T. Ungár: Monte-Carlo and least-squares procedures combined for global minimum of the physical parameters in line profile analysis. In preparation.

  32. M.A. Krivoglaz: X-ray and Neutron Diffraction in Nonideal Crystals (Springer, Berlin, Heidelberg, 1996).

    Book  Google Scholar 

  33. M. Wilkens: Theoretical aspects of kinematical X-ray diffraction profiles from crystals containing dislocation distributions. In Fundamental Aspects of Dislocation Theory, Vol. II, J.A. Simmons, R. de Wit, and R. Bullough, eds.; (Nat. Bur. Stand. (US), Spec. Publ. No. 317, Washington, DC, USA, 1970); p. 1195.

    Google Scholar 

  34. I. Groma, T. Ungár, and M. Wilkens: Asymmetric X-ray line broadening of plastically deformed crystals. I. Theory. J. Appl. Crystallogr. 21, 47 (1988).

    Article  Google Scholar 

  35. J.E. Bailey and P.B. Hirsch: The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. 5, 485 (1960).

    Article  CAS  Google Scholar 

  36. T. Ungár and G. Tichy: The effect of dislocation contrast on X-ray line profiles in untextured polycrystals. Phys. Status Solidi 147, 425 (1999).

    Article  Google Scholar 

  37. G. Csiszár, K. Pantleon, H. Alimadadi, G. Ribárik, and T. Ungár: Dislocation density and Burgers vector population in fiber-textured Ni thin films determined by high-resolution X-ray line profile analysis. J. Appl. Crystallogr. 45, 61 (2012).

    Article  CAS  Google Scholar 

  38. B. Jóni, T. Al-Samman, S.G. Chowdhury, G. Csiszár, and T. Ungár: Dislocation densities and prevailing slip-system types determined by X-ray line profile analysis in a textured AZ31 magnesium alloy deformed at different temperatures. J. Appl. Crystallogr. 46, 55 (2013).

    Article  CAS  Google Scholar 

  39. T. Ungár, G. Tichy, J. Gubicza, and R.J. Hellmig: Correlation between subgrains and coherently scattering domains. Powder Diffr. 20, 366 (2005).

    Article  CAS  Google Scholar 

  40. Gy. Zilahi, T. Ungár, and G. Tichy: A common theory of line broadening and rocking curves. J. Appl. Crystallogr. 48, 418 (2015).

    Article  CAS  Google Scholar 

  41. S. Nemat-Nasser, J-Y. Choi, W-G. Guo, and J.B. Isaacs: Very high strain-rate response of a NiTi shape-memory alloy. Mech. Mater. 37, 287 (2005).

    Article  Google Scholar 

  42. S. Nemat-Nasser and W-G. Guo: Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures. Mech. Mater. 38, 463 (2006).

    Article  Google Scholar 

  43. W.G. Guo, J. Su, Y. Su, and S.Y. Chu: On phase transition velocities of NiTi shape memory alloys. J. Alloys Compd. 501, 70 (2010).

    Article  CAS  Google Scholar 

  44. L.B. Freund and J.W. Hutchinson: High strain-rate crack growth in rate-dependent plastic solids. J. Mech. Phys. Solids 33, 169 (1985).

    Article  Google Scholar 

  45. L.B. Freund, J.W. Hutchinson, and P.S. Lam: Analysis of high-strain-rate elastic-plastic crack growth. Eng. Fract. Mech. 23, 119 (1986).

    Article  Google Scholar 

  46. G.T. Grey, III: High-strain-rate deformation: Mechanical behavior and deformation substructures induced. Annu. Rev. Mater. Res. 42, 285 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

T.U. is grateful to the Humboldt Foundation of Germany for supporting this research. JF, SG and GE acknowledge funding by the German Research Association (DFG) through project C1 of SPP 1544 (Ferroic Cooling). G.R. gratefully acknowledges the support of the János Bolyai Research. Fellowship of the Hungarian Academy of Sciences. The authors thank Dr. G. Csiszár for the assistance in carrying out the X-ray diffraction experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamas Ungár.

Additional information

Dedicated to the 80th Birthday of Professor Haël Mughrabi.

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

A previous error in this article has been corrected. For details, see 10.1557/jmr.2017.459

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ungár, T., Frenzel, J., Gollerthan, S. et al. On the competition between the stress-induced formation of martensite and dislocation plasticity during crack propagation in pseudoelastic NiTi shape memory alloys. Journal of Materials Research 32, 4433–4442 (2017). https://doi.org/10.1557/jmr.2017.267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.267

Navigation