Cold sintering: Current status and prospects

Abstract

This manuscript describes, defines, and discusses the process of cold sintering, which can consolidate a broad set of inorganic powders between room temperature and 300 °C using a standard uniaxial press and die. This temperature range is well below that needed for appreciable bulk diffusion, indicating immediately the distinction from the well-known and thermally driven analogue, allowing for an unconventional method for densifying these inorganic powders. Sections of this report highlight the general background and history of cold sintering, the current set of known compositions that exhibit compatibility with this process, the basic experimental techniques, the current understanding of physical mechanisms necessary for densification, and finally opportunities and challenges to expand the method more generically to other systems. The newness of this approach and the potential for revolutionary impact on traditional methods of powder-based processing warrants this discussion despite a nascent understanding of the operative mechanisms.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

References

  1. 1.

    M.N. Rahaman: Sintering of Ceramics (CRC Press, Baca Raton, 2008).

    Google Scholar 

  2. 2.

    R.M. German: Sintering Theory and Practice (Wiley, New York City, 1996).

    Google Scholar 

  3. 3.

    S-J.L. Kang: Sintering: Densification, Grain Growth, and Microstructure (Butterworth-Heinemann, Oxford, 2005).

    Google Scholar 

  4. 4.

    M. Cologna, B. Rashkova, and R. Raj: Flash sintering of nanograin zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 93(11), 3556 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    Z. Shen, Z. Zhao, H. Peng, and M. Nygren: Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening. Nature 417, 266 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    R. Chaim, A. Shlayer, and C. Estournes: Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering. J. Eur. Ceram. Soc. 29(1), 91 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    Z. Valdez-Nava, S. Guillemet-Fritsch, C. Tenailleau, T. Lebey, B. Durand, and J.Y. Chane-Ching: Colossal dielectric permittivity of BaTiO3-based nanocrystalline ceramics sintered by spark plasma sintering. J. Electroceram. 22(1–3), 238 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    C. Elissalde, M. Maglione, and C. Estournes: Tailoring dielectric properties of multilayer composites using spark plasma sintering. J. Am. Ceram. Soc. 90(3), 973 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    N. Shomrat, S. Baltianski, C.A. Randall, and Y. Tsur: Flash sintering of potassium-niobate. J. Eur. Ceram. Soc. 35(7), 2209 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Z. Zhao, V. Buscaglia, P. Bowen, and M. Nygren: Spark plasma sintering of nano-crystalline ceramics. Key Eng. Mater. 264–268, 2297 (2004).

    Article  Google Scholar 

  11. 11.

    N. Yamasaki, K. Yanagisawa, M. Nishioka, and S. Kanahara: A hydrothermal hot-pressing method: Apparatus and application. J. Mater. Sci. Lett. 5, 355 (1986).

    Article  Google Scholar 

  12. 12.

    J. Guo, H. Guo, A.L. Baker, M.T. Lanagan, E.R. Kupp, G.L. Messing, and C.A. Randall: Cold sintering: A paradigm shift for processing and integration of ceramics. Angew. Chem., Int. Ed. 55(38), 11457 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    H. Guo, A. Baker, J. Guo, C.A. Randall, and D. Johnson: Cold sintering process: A novel technique for low-temperature ceramic processing of ferroelectrics. J. Am. Ceram. Soc. 99(11), 3489 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    H. Guo, A. Baker, J. Guo, and C.A. Randall: Protocol for ultralow-temperature ceramic sintering: An integration of nanotechnology and the cold sintering process. ACS Nano 10(11), 10606 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    H. Guo, J. Guo, A. Baker, and C.A. Randall: Hydrothermal-assisted cold sintering process: A new guidance for low-temperature ceramic sintering. ACS Appl. Mater. Interfaces 8(32), 20909 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    A. Baker, H. Guo, J. Guo, and C. Randall: Utilizing the cold sintering process for flexible-printable electroceramic device fabrication. J. Am. Ceram. Soc. 99(10), 3202 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    J. Guo, A.L. Baker, H. Guo, M. Lanagan, and C.A. Randall: Cold sintering process: A new era for ceramic packaging and microwave device development. J. Am. Ceram. Soc. 7, 1 (2016).

    Google Scholar 

  18. 18.

    J. Guo, H. Guo, D.S.B. Heidary, S. Funahashi, and C.A. Randall: Semiconducting properties of cold sintered V2O5 ceramics and Co-sintered V2O5-PEDOT: PSS composites. J. Eur. Ceram. Soc. 37(4), 1529 (2016).

    Article  CAS  Google Scholar 

  19. 19.

    J. Guo, S.S. Berbano, H. Guo, A.L. Baker, M.T. Lanagan, and C.A. Randall: Cold sintering process of composites: Bridging the processing temperature gap of ceramic and polymer materials. Adv. Funct. Mater. 26(39), 7115 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    H. Guo, J. Guo, A. Baker, and C.A. Randall: Cold sintering process for ZrO2-based ceramics: Significantly enhanced densification evolution in yttria-doped ZrO2. J. Am. Ceram. Soc. 100(2), 491 (2016).

    Article  CAS  Google Scholar 

  21. 21.

    H. Guo, T.J.M. Bayer, J. Guo, A. Baker, and C.A. Randall: Cold sintering process for 8 mol% Y2O3-stabilized ZrO2 ceramics. J. Eur. Ceram. Soc. 37(5), 2303 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    H. Kähäri, M. Teirikangas, J. Juuti, and H. Jantunen: Dielectric properties of lithium molybdate ceramic fabricated at room temperature. J. Am. Ceram. Soc. 97(11), 3378 (2014).

    Article  CAS  Google Scholar 

  23. 23.

    H. Kähäri, M. Teirikangas, J. Juuti, and H. Jantunen: Improvements and modifications to room-temperature fabrication method for dielectric Li2MoO4 ceramics. J. Am. Ceram. Soc. 98(3), 687 (2015).

    Article  CAS  Google Scholar 

  24. 24.

    H. Kähäri, M. Teirikangas, J. Juuti, and H. Jantunen: Room-temperature fabrication of microwave dielectric Li2MoO4–TiO2 composite ceramics. Ceram. Int. 42(9), 11442 (2016).

    Article  CAS  Google Scholar 

  25. 25.

    C.A. Randall, J. Guo, H. Guo, A. Baker, and M.T. Lanagan (The Penn State Research Foundation, assignee): Cold Sintering Ceramics and Composites. U.S. Provisional Patent Service Number 62/234 (2015).

  26. 26.

    S. Funahashi, J. Guo, H. Guo, K. Wang, A.L. Baker, K. Shiratsuyu, and C.A. Randall: Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics. J. Am. Ceram. Soc. 100(2), 546 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    S.S. Berbano, J. Guo, H. Guo, M.T. Lanagan, and C.A. Randall: Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. J. Am. Ceram. Soc., 100(5), 2123 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    I.J. Induja and M.T. Sebastian: Microwave dielectric properties of mineral sillimanite obtained by conventional and cold sintering process. J. Eur. Ceram. Soc. 37(5), 2143 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    P. De Silva, L. Bucea, V. Sirivivatnanon, and D.R. Moorehead: Carbonate binders by “cold sintering” of calcium carbonate. J. Mater. Sci. 42(16), 6792 (2007).

    CAS  Article  Google Scholar 

  30. 30.

    N. Yamasaki, W. Tang, and J. Ke: Low-temperature sintering of calcium carbonate by a hydrothermal hot-pressing technique. J. Mater. Sci. Lett. 11(13), 934 (1992).

    CAS  Article  Google Scholar 

  31. 31.

    K. Yanagisawa, K. Ioku, and N. Yamasaki: Formation of anatase porous ceramics by hydrothermal hot-pressing of amorphous titania spheres. J. Am. Ceram. Soc. 80(5), 1303 (1997).

    CAS  Article  Google Scholar 

  32. 32.

    K. Yanagisawa, K. Ioku, and N. Yamasaki: Pore size control of porous silica ceramics by hydrothermal hot-pressing. J. Ceram. Soc. Jpn. 102(1190), 966 (1994).

    CAS  Article  Google Scholar 

  33. 33.

    Y. Xie, S. Yin, H. Yamane, T. Hashimoto, and T. Sato: Low temperature sintering and color of a new compound Sn1.24Ti1.94O3.66(OH)1.50F1.42. Solid State Sci. 11(9), 1703 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    F. Bouville and A.R. Studart: Geologically-inspired strong bulk ceramics made with water at room temperature. Nat. Commun. 8, 14655 (2017).

    Article  Google Scholar 

  35. 35.

    I.J. Clark, T. Takeuchi, N. Ohtori, and D.C. Sinclair: Hydrothermal synthesis and characterisation of perovskite. J. Mater. Chem. 9(1), 83 (1999).

    CAS  Article  Google Scholar 

  36. 36.

    M.Z.C. Hu, V. Kurian, E.A. Payzant, C.J. Rawn, and R.D. Hunt: Wet-chemical synthesis of monodispersed barium titanate particles—Hydrothermal conversion of TiO2 microspheres to nanocrystalline BaTiO3. Powder Technol. 110(1–2), 2 (2000).

    CAS  Article  Google Scholar 

  37. 37.

    P.K. Dutta, R. Asiaie, S.A. Akbar, and W. Zhu: Hydrothermal synthesis and dielectric properties of tetragonal BaTiO3. Chem. Mater. 6(9), 1542 (1994).

    CAS  Article  Google Scholar 

  38. 38.

    M. Yoshimura, S-E. Yoo, M. Hayashi, and N. Ishizawa: Preparation of BaTiO3 thin film by hydrothermal electrochemical method. Jpn. J. Appl. Phys. 28(11), 2007 (1989).

    Article  Google Scholar 

  39. 39.

    H. Akyıldız, M. Casper, S. Aygün, P. Lam, and J. Maria: Hydrothermal BaTiO3 thin films from nanostructure Ti templates. J. Mater. Res. 26(4), 592 (2011).

    Article  CAS  Google Scholar 

  40. 40.

    C. Vakifahmetoglu, J.F. Anger, V. Atakan, S. Quinn, S. Gupta, Q. Li, L. Tang, and R.E. Riman: Reactive hydrothermal liquid-phase densification (rHLPD) of ceramics—A study of the BaTiO3[TiO2] composite system. J. Am. Ceram. Soc. 99, 3893 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    S-I. Hirano and S. Somiya: Hydrothermal reaction sintering of pure Cr2O3. J. Am. Ceram. Soc. 59(11–12), 534 (1976).

    CAS  Article  Google Scholar 

  42. 42.

    K. Anagisawa, M. Sasaki, M. Nishioka, K. Ioku, and N. Yamasaki: Preparation of sintered compacts of anatase by hydrothermal hot-pressing. J. Mater. Sci. Lett. 13, 765 (1994).

    Article  Google Scholar 

  43. 43.

    B. Dargatz, J. Gonzalez-Julian, M. Bram, P. Jakes, A. Besmehn, L. Schade, R. Röder, C. Ronning, and O. Guillon: FAST/SPS sintering of nanocrystalline zinc oxide-part I: Enhanced densification and formation of hydrogen-related defects in presence of adsorbed water. J. Eur. Ceram. Soc. 36(5), 1207 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    W.M. Haynes: CRC Handbook of Chemistry and Physics, 97th ed. (CRC Press, Boca Raton, 2016).

    Google Scholar 

  45. 45.

    R.A. Van Santen: The Ostwald step rule. J. Phys. Chem. 88(6), 5768 (1984).

    Article  Google Scholar 

  46. 46.

    D. Velegol, A. Garg, R. Guha, A. Kar, and M. Kumar: Origins of concentration gradients for diffusiophoresis. Soft Matter 12(21), 4686 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    T. Senda and R.C. Bradt. Grain growth in sintered ZnO and ZnO–Bi2O3 ceramics. J. Am. Ceram. Soc. 1, 106 (1990).

    Article  Google Scholar 

  48. 48.

    P.B. Vandiver, O. Soffer, B. Klima, J. Svoboda, P.B. Vandiver, O. Soffer, B. Klima, and J. Svoboda: The origins of ceramic technology at dolni věstonice, czechoslovakia. Science 246(4933), 1002 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge support from The Center for Dielectrics and Piezoelectrics, a national research center and consortium under the auspices of the Industry/University Cooperative Research Centers program at the National Science Foundation under Grant Nos. IIP-1361571 and 1361503. The authors thank Professor James LeBeau and Matt Cabral for TEM imaging of cold sintered ceramics. This work was performed in part at the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (award number ECCS-1542015). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI). We also thank the visiting scientist support from Murata Electronics, and also the Materials Characterization Laboratory, at the Materials Research Institute at PSU. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1252376. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Clive A. Randall.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maria, JP., Kang, X., Floyd, R.D. et al. Cold sintering: Current status and prospects. Journal of Materials Research 32, 3205–3218 (2017). https://doi.org/10.1557/jmr.2017.262

Download citation