On the valence electron theory to estimate the transformation temperatures of Cu–Al-based shape memory alloys

Abstract

A systematic analysis of the correlation between the valence electrons and the transformation temperatures of Ti–Ni-based shape memory alloys has been carried out by Zarinjad and Liu. They have shown that the valence electron theory can be successfully applied to estimate these temperatures, although the mechanisms of the temperature shift during alloying remains not completely understood. Other important shape memory alloy systems with technological importance are the Cu–Al based, which deserve a thorough analysis concerning the composition influence on the transformation temperatures and the valence electron theory. In this paper, the valence electron concentration, valence electron density (VED), enthalpy of reaction, and crystallographic compatibility were analyzed to understand the mechanisms, which control the transformation temperatures of Cu–Al-based alloys. It was observed that the larger the VED, the more energy is used in the transformation. The same tendency is present when the crystallographic compatibility is smaller. These results show that the valence electron theory based on the VED plays an important role in the prediction of the temperature transformation and the energies involved in the reaction.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

References

  1. 1.

    K. Otsuka and X. Ren: Recent developments in the research of shape memory alloys. Intermetallics 7, 511 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    K. Otsuka and C.M. Wayman: Shape Memory Materials (Cambridge University Press, Cambridge, U.K., 1998).

    Google Scholar 

  3. 3.

    E.M. Mazzer, C.S. Kiminami, C. Bolfarini, R.D. Cava, W.J. Botta, P. Gargarella, F. Audebert, and M. Galano: Phase transformation and shape memory effect of a Cu–Al–Ni–Mn–Nb high temperature shape memory alloy. J. Mater. Sci. Eng. A 663, 64 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    E.M. Mazzer, C.S. Kiminami, C. Bolfarini, R.D. Cava, W.J. Botta, and P. Gargarella: Thermodynamic analysis of the effect of annealing on the thermal stability of a Cu–Al–Ni–Mn shape memory alloy. Thermochim. Acta 608, 1 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    K. Otsuka and X. Ren: Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50(5), 511 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    M. Zarinejad and Y. Liu: Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons. Adv. Funct. Mater. 18(18), 2789 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    M. Zarinejad and Y. Liu: Dependence of transformation temperatures of shape memory alloys on the number and concentration of valence electrons. In Shape Memory Alloys: Manufacture, Properties and Applications, H.R. Chen, ed. (Nova Science Publishers, Inc., New York, 2010); p. 339.

    Google Scholar 

  8. 8.

    W.D. Callister: Materials Science and Engineering: An Introduction, 7th ed. (Wiley, New York, 2007).

    Google Scholar 

  9. 9.

    J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, and G. Eggeler: Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 58(9), 3444 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    X. Ren and K. Otsuka: Why does the martensitic transformation temperature strongly depend on composition?Mater. Sci. Forum 327, 429 (2000).

    Article  Google Scholar 

  11. 11.

    X. Ren, N. Miura, J. Zhang, K. Otsuka, K. Tanaka, M. Koiwa, T. Suzuki, Yu.I. Chumlyakov, and M. Asai: A comparative study of elastic constants of Ti–Ni-based alloys prior to martensitic transformation. J. Mater. Sci. Eng. A A306, 196 (2001).

    Article  Google Scholar 

  12. 12.

    J.J. Gilman: Electronic Basis of the Strength of Materials (Cambridge University Press, Cambridge, U.K., 2008); pp. 116–120.

    Google Scholar 

  13. 13.

    J.J. Gilman, R.W. Cumberland, and R.B. Kaner: Design of hard crystals. Int. J. Refract. Met. Hard Mater. 24(1–2), 1 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    V. Recarte, R.B. Pérez-Sáez, E.H. Bocanegra, M.L. Nó, and J. San-Juan: Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys. J. Mater. Sci. Eng. A 273, 380 (1999).

    Article  Google Scholar 

  15. 15.

    K.F. Hane and T.W. Shield: Microstructure in the cubic to monoclinic transition in titanium–nickel shape memory alloys. Acta Mater. 47, 2603 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    R.D. James and K.F. Hane: Martensitic transformations ans shape memory materials. Acta Mater. 48, 197 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, and I. Takeuchi: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5(4), 286 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, and G. Eggeler: On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater. 90, 213 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    C.L. Lewis, G.P. Jackson, S.K. Doorn, V. Majidi, F.L. King, and A. Giwa: Spectral, spatial and temporal characterization of a millisecond pulsed glow discharge: Copper analyte emission and ionization. Spectrochim. Acta, Part B 56, 487 (2001).

    Article  Google Scholar 

  20. 20.

    H. Kato, Y. Yasuda, and K. Sasaki: Thermodynamic assessment of the stabilization effect in deformed shape memory alloy martensite. Acta Mater. 59(10), 3955 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    V. Recarte, R.B. Pérez-Sáez, E.H. Bocanegra, M.L. Nó, and J. San-Juan: Influence of Al and Ni concentration on the Martensitic transformation in Cu–Al–Ni shape-memory alloys. Metall. Mater. Trans. A 33, 2581 (2002).

    Article  Google Scholar 

  22. 22.

    V. Recarte, J.I. Pérez-Landazábal, P.P. Rodríguez, E.H. Bocanegra, M.L. Nó, and J. San Juan: Thermodynamics of thermally induced martensitic transformations in Cu–Al–Ni shape memory alloys. Acta Mater. 52(13), 3941 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    S.N. Saud, E. Hamzah, T. Abubakar, H.R. Bakhsheshi-Rad, M. Zamri, and M. Tanemura: Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu–Al–Ni shape memory alloys. J. Mater. Eng. Perform. 23(10), 3620 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    S.N. Saud, E. Hamzah, T. Abubakar, M. Zamri, and M. Tanemura: Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. J. Therm. Anal. Calorim. 118(1), 111 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    S.N. Saud, T.A. Abu Bakar, E. Hamzah, M.K. Ibrahim, and A. Bahador: Effect of quarterly element addition of cobalt on phase transformation characteristics of Cu–Al–Ni shape memory alloys. Metall. Mater. Trans. A 46(8), 3528 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    R. Dasgupta: A look into Cu-based shape memory alloys: Present scenario and future prospects. J. Mater. Res. 29(16), 1681 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    K. Yildiz and M. Kok: Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys. J. Therm. Anal. Calorim. 115(2), 1509 (2013).

    Article  Google Scholar 

  28. 28.

    G. Lojen, M. Gojić, and I. Anžel: Continuously cast Cu–Al–Ni shape memory alloy—Properties in as-cast condition. J. Alloys Compd. 580, 497 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    S. Yang, Y. Su, C. Wang, and X. Liu: Microstructure and properties of Cu–Al–Fe high-temperature shape memory alloys. Metall. Mater. Trans. B 185, 67 (2014).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the financial support granted by CNPq (202071/2014-6).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric Marchezini Mazzer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mazzer, E.M., Gargarella, P., Kiminami, C.S. et al. On the valence electron theory to estimate the transformation temperatures of Cu–Al-based shape memory alloys. Journal of Materials Research 32, 3165–3174 (2017). https://doi.org/10.1557/jmr.2017.246

Download citation