Toward a metrological calibration of the conversion efficiency in GaAs nanowire-based photodetectors

Abstract

We describe the main experimental challenges toward the metrological calibration of photodetectors based on single semiconductor nanowires, and we propose a method for the quantification of their photoresponse, focusing in particular on GaAs nanowires. Spatially resolved measurements of the device’s photocurrent were performed with a far-field scanning optical setup and a laser excitation at λ = 656 nm. The photoresponse was quantitatively described by fitting the two-dimensional mapping of the photocurrent at different positions along the main nanowire axis. Our results indicate that the device’s photoresponse strongly depends on the position along the nanowire, which is attributed to the inhomogeneous properties of the device’s contacts. Furthermore, we show that its spatial profile across the nanowire can be directly compared with the profile of the laser beam by taking into account the angle between the scanning direction and the main nanowire axis as a geometrical factor. Finally, we discuss the impacts of laser-induced heating effects on the calibration of such nanoscale devices.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

References

  1. 1.

    C.M. Lieber: Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bull. 36, 1052 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    C. Colombo, M. Heibeta, M. Gratzel, and A. Fontcuberta i Morral: Gallium arsenide p–i–n radial structures for photovoltaic applications. Appl. Phys. Lett. 94, 173108 (2009).

    Article  Google Scholar 

  4. 4.

    Y. Huang, X. Duan, and C.M. Lieber: Nanowires for integratedmulticolor nanophotonics. Small 1, 142 (2005).

    CAS  Google Scholar 

  5. 5.

    J. Bao, M. Zimmler, F. Capasso, X. Wang, and Z. Ren: Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 6, 1719 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    O. Hayden, A. Greytak, and D. Bell: Core–shell nanowire light emitting diodes. Adv. Mater 17, 701 (2006).

    Article  Google Scholar 

  7. 7.

    C. Soci, A. Zhang, X-Y. Bao, H. Kim, Y. Lo, and D. Wang: Nanowire photodetectors. J. Nanosci. Nanotechnol. 10, 1430 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    O. Hayden, R. Agarwal, and C.M. Lieber: Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 5, 352 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    H. Kind, H. Yan, B. Messer, M. Law, and P. Yang: Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    X. Chen, C.K.Y. Wong, C.A. Yuan, and G. Zhang: Nanowire-based gas sensors. Sens. Actuators, B 177, 178 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Ponzoni, D. Zappa, and G. Sberveglieri: Metal oxide nanowire chemical and biochemical sensors. J. Mater. Res. 28, 2911 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    X. Duan, Y. Huang, Y. Cui, J. Wang, and C.M. Lieber: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    R. Yan, D. Gargas, and P. Yang: Nanowire photonics. Nat. Photonics 3, 569 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    T. Voss, G.T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow: High-order waveguide modes in zno nanowires. Nano Lett. 7, 3675 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J.G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning: Continuous wave nanowire lasing. Nano Lett. 13, 3602 (2013).

    Article  Google Scholar 

  16. 16.

    C.A. Richter, H.D. Xiong, X. Zhu, W. Wang, V.M. Stanford, W-K. Hong, T. Lee, D.E. Ioannou, and Q. Li: Metrology for the electrical characterization of semiconductor nanowires. IEEE Trans. Electron Devices 55, 3086 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    J.A. Dagata, C.A. Richter, R.M. Silver, E.M. Vogel, and J.V. Martinez de Pinillos: Metrology development for the nanoelectronics industry at the national institute for standards and technology. NSTI-Nanotech 2004, 3 (2004). Available at: www.nsti.org, ISBN 0-9728422-9-2.

  18. 18.

    J.D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, L. Fernandez-Romero, T. Andreu, A. Cirera, A. Romano-Rodriguez, A. Cornet, J. Ramon Morante, S. Barth, and S. Mathur: Toward a systematic understanding of photodetectors based on individual metal oxide nanowires. J. Phys. Chem. C 112, 14639 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    J. Boland, S. Conesa-Boj, P. Parkinson, G. Tütüncüoglu, F. Matteini, D. Ruffer, C.A.A. Amaduzzi, F. Jabeen, C. Davies, H. Joyce, A. Fontcuberta i Morral, and M. Johnston: Modulation doping of GaAs/AlGaAs core–shell nanowires with effective defect passivation and high electron mobility. Nano Lett. 15, 1336 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    F. Matteini, G. Tütüncüoglu, D. Mikulik, J. Vukajlovic-Plestina, H. Potts, J.B. Leran, W.C. Carter, and A. Fontcuberta i Morral: Impact of the Ga droplet wetting, morphology, and pinholes on the orientation of GaAs nanowires. Cryst. Growth Des. 16, 5781 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J.R. Morante, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral: Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon. Nanoscale 4, 1486 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    A. Casadei, E. Alarcon Llado, F. Amaduzzi, E. Russo-Averchi, D. Rüffer, M. Heissm, L. Dal Negro, and A. Fontcuberta i Morral: Polarization response of nanowires à la carte. Sci. Rep. 7, 7651 (2015).

    Article  Google Scholar 

  23. 23.

    Online source: NCCR “QSIT—Quantum Science and Technology”: Automated e-Beam (2014). Available at: http://www.nccr-qsit.ethz.ch/technology-transfer/qstarter/current-projects/automated-e-beam.html.

  24. 24.

    P. Blanc, M. Heiss, C. Colombo, A.D. Mallorquì, T.S. Safaei, P. Krogstrup, J. Nygård, and A. Fontcuberta i Morral: Electrical contacts to single nanowires: A scalable method allowing multiple devices on a chip. Application to a single nanowire radial p–i–n junction. Int. J. Nanotechnol. 10, 419 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    C. Gutsche, A. Lysov, I. Regolin, and A. Brodt: Ohmic contacts to n-GaAs nanowires. J. Appl. Phys. 110, 014305 (2011).

    Article  Google Scholar 

  26. 26.

    B. Rodiek, M. Lopez, H. Hofer, G. Porrovecchio, M. Smid, X.L. Chu, S. Gotzinger, V. Sandoghdar, S. Lindner, C. Becher, and S. Kück: Experimental realization of an absolute single-photon source based on a single nitrogen vacancy center in a nanodiamond. Optica 4, 71 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Y. Gu, E-S. Kwak, J.L. Lensch, J.E. Allen, T.W. Odom, and L.J. Lauhon: Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl. Phys. Lett. 87, 043111 (2005).

    Article  Google Scholar 

  28. 28.

    S. Thunich, L. Prechtel, D. Spirkoska, G. Abstreiter, A. Fontcuberta i Morral, and A. Holleitner: Photocurrent and photoconductance properties of a GaAs nanowire. Appl. Phys. Lett. 95, 083111 (2009).

    Article  Google Scholar 

  29. 29.

    C.J. Chunnilall, I.P. Degiovanni, S. Kück, I. Müller, and A.G. Sinclair: Metrology of single-photon sources and detectors: A review. Opt. Eng. 53, 081910 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge Gözde Tütüncüoglu, Nicholas G. Morgan, Martin Friedl and Anna Fontcuberta i Morral (Laboratory of Semiconductor Materials of the École Polytechnique Fédérale de Lausanne) for sample preparation and comments on the manuscript. Furthermore, we gratefully acknowledge support of the Braunschweig International Graduate School of Metrology B-IGSM and the DFG Research Training Group GrK1952/1 “Metrology for complex Nanosystems” as well as that of the DFG-funded research group FOR1616 (project Vo 1265/6-2).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Davide Cammi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cammi, D., Rodiek, B., Zimmermann, K. et al. Toward a metrological calibration of the conversion efficiency in GaAs nanowire-based photodetectors. Journal of Materials Research 32, 2464–2470 (2017). https://doi.org/10.1557/jmr.2017.225

Download citation