The effect of size and composition on the strength and hardening of Cu–Ni/Nb nanoscale metallic composites


Nanoscale metallic material composites consisting of bilayer and trilayer systems of two and three different metallic alternating layers show significant gains in hardness over monolithic single phase films. One of the main applications of these composites can be as protective coatings to technical components to increase their lifespan acting as a mechanical barrier to the carriers of permanent deformation. In this work, we study the strength of bilayer structures made of alternating layers of niobium (Nb) and copper–nickel (Cu–Ni) alloys. The effect of the layer size and composition on strength and hardening as well as the effect of the metal–alloy interface on the dislocation motion is investigated. The simulations reveal a close relationship between the atomic composition of the alloy and the hardening of the film. The results are also compared with experimental findings on nanopillars made of similar structures, and strong similarities are revealed and discussed.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    A. Misra and H. Kung: Deformation behavior of nanostructured metallic multilayers. Adv. Eng. Mater. 3 (4), 217 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    R. Hoagland, T. Mitchell, J. Hirth, and H. Kung: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. A 82 (4), 643 (2002).

    CAS  Google Scholar 

  3. 3.

    A. Bellou, C.T. Overman, H.M. Zbib, D.F. Bahr, and A. Misra: Strength and strain hardening behavior of Cu-based bilayers and trilayers. Scr. Mater. 64 (7), 641 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Y. Wang, A. Misra, and R. Hoagland: Fatigue properties of nanoscale Cu/Nb multilayers. Scr. Mater. 54 (9), 1593 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    A. Misra, M. Demkowicz, X. Zhang, and R. Hoagland: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59 (9), 62 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    J. McKeown, A. Misra, H. Kung, R.G. Hoagland, and M. Nastasi: Microstructures and strength of nanoscale Cu–Ag multilayers. Scr. Mater. 46 (8), 593 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    D.R. Economy, B.M. Schultz, and M.S. Kennedy: Impacts of accelerated aging on the mechanical properties of Cu–Nb nanolaminates. J. Mater. Sci. 47 (19), 6986 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    A. Misra, M. Verdier, Y.C. Lu, H. Kung, T.E. Mitchell, M. Nastasi, and D.J. Embury: Structure and mechanical properties of Cu–X (X = Nb, Cr, Ni) nanolayered composites. Scr. Mater. 39 (4/5), 555 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    N. Abdolrahim, H.M. Zbib, and D.F. Bahr: Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int. J. Plast. 52, 33 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    I.N. Mastorakos and N. Abdolrahim: Deformation mechanisms in composite nano-layered metallic and nanowire structures. Int. J. Mech. Sci. 52, 295 (2010).

    Article  Google Scholar 

  11. 11.

    J.D. Gale, A. Achuthan, and D.J. Morrison: Indentation size effect (ISE) in copper subjected to severe plastic deformation (SPD). Metall. Mater. Trans. A 45 (5), 2487 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    I.N. Mastorakos, H.M. Zbib, and D.F. Bahr: Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94 (17), 173114 (2009).

    Article  CAS  Google Scholar 

  13. 13.

    S. Shao, H.M. Zbib, I.N. Mastorakos, and D.F. Bahr: The void nucleation strengths of the Cu–Ni–Nb-based nanoscale metallic multilayers under high strain rate tensile loadings. Comput. Mater. Sci. 82, 435 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    D. Mitlin, A. Misra, V. Radmilovic, M. Nastasi, R. Hoagland, D. Embury, J. Hirth, and T. Mitchell: Formation of misfit dislocations in nanoscale Ni–Cu bilayer films. Philos. Mag. 84 (7), 719 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    D. Mitlin, A. Misra, T. Mitchell, J. Hirth, and R. Hoagland: Interface dislocation structures at the onset of coherency loss in nanoscale Ni–Cu bilayer films. Philos. Mag. 85 (28), 3379 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    A. Misra, J.P. Hirth, and R.G. Hoagland: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53 (18), 4817 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    F. Akasheh, H. Zbib, J. Hirth, R. Hoagland, and A. Misra: Dislocation dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. J. Appl. Phys. 101 (8), 84314 (2007).

    Article  CAS  Google Scholar 

  18. 18.

    A. Misra, M. Demkowicz, J. Wang, and R. Hoagland: The multiscale modeling of plastic deformation in metallic nanolayered composites. JOM 60 (4), 39 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    I.N. Mastorakos, A. Bellou, D.F. Bahr, and H.M. Zbib: Size-dependent strength in nanolaminate metallic systems. J. Mater. Res. 26 (10), 1179 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    H.C. Barshilia and K.S. Rajam: Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surf. Coat. Technol. 155 (2–3), 195 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    J. Wang and A. Misra: An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15 (1), 20 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    J.Y. Zhang, X. Zhang, G. Liu, G.J. Zhang, and J. Sun: Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films. Scr. Mater. 63 (1), 101 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    H.M. Zbib, C.T. Overman, F. Akasheh, and D. Bahr: Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Int. J. Plast. 27 (10), 1618 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    S. Shao, H.M. Zbib, I.N. Mastorakos, and D.F. Bahr: Deformation mechanisms, size effects, and strain hardening in nanoscale metallic multilayers under nanoindentation. J. Appl. Phys. 112 (4), 44307 (2012).

    Article  CAS  Google Scholar 

  25. 25.

    N.J. Petch: The cleavage strength of polycrystals. J. Iron Steel Inst., London 174, 25 (1953).

    CAS  Google Scholar 

  26. 26.

    R.L. Schoeppner, J.M. Wheeler, J. Zechner, J. Michler, H.M. Zbib, and D.F. Bahr: Coherent interfaces increase strain-hardening behavior in tri-component nano-scale metallic multilayer thin films. Mater. Res. Lett. 3 (2), 114 (2015).

    Article  CAS  Google Scholar 

  27. 27.

    M. Verdier, H. Huang, F. Spaepen, J.D. Embury, and H. Kung: Microstructure, indentation and work hardening of Cu/Ag multilayers. Philos. Mag. 86 (32), 5009 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    H. Huang and F. Spaepen: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48 (12), 3261 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    J. Wang, Q. Zhou, S. Shao, and A. Misra: Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 5 (1), 1 (2017).

    Article  CAS  Google Scholar 

  30. 30.

    N. Mara, D. Bhattacharyya, P. Dickerson, R. Hoagland, and A. Misra: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92 (23), 231901 (2008).

    Article  CAS  Google Scholar 

  31. 31.

    R. Rabe, J-M. Breguet, P. Schwaller, S. Stauss, F-J. Haug, J. Patscheider, and J. Michler: Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope. Thin Solid Films 469–470, 206 (2004).

    Article  CAS  Google Scholar 

  32. 32.

    J.M. Wheeler and J. Michler: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84 (4), 45103 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    S.J. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Physiol. 117, 1 (1995).

    CAS  Article  Google Scholar 

  34. 34.

    M. Daw and M. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1983).

    Article  Google Scholar 

  35. 35.

    A.F. Voter: Intermetallic Compounds. Principles and Practice (Wiley, Chichester, 1995).

    Google Scholar 

  36. 36.

    R.G. Hoagland, J.P. Hirth, and A. Misra: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86 (23), 3537 (2006).

    CAS  Article  Google Scholar 

  37. 37.

    Q. Zhang, W.S. Lai, and B.X. Liu: Atomic structure and physical properties of Ni–Nb amorphous alloys determined by an n-body potential. J. Non-Cryst. Solids 261 (1–3), 137 (2000).

    CAS  Article  Google Scholar 

  38. 38.

    S. Melchionna, G. Ciccotti, and B. Lee Holian: Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 78 (3), 533 (1993).

    CAS  Article  Google Scholar 

  39. 39.

    R. Hoagland, R. Kurtz, and C. Henager: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50 (6), 775 (2004).

    CAS  Article  Google Scholar 

  40. 40.

    I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  41. 41.

    R.W. Hertzberg, R.P. Vinci, and J.L. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 5th ed. (John Wiley & Sons, Inc, Hoboken, NJ, 2012).

    Google Scholar 

  42. 42.

    A. Stukowski, V.V. Bulatov, and A. Arsenlis: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20 (8), 85007 (2012).

    Article  Google Scholar 

Download references


This work was supported in part by the National Science Foundation under Grant No. CMMI 1634772/1634640 and in part by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences under Grant No. DE-FG02-07ER46435. The authors acknowledge access, through an approved user project, to the Center for Integrated Nanotechnologies (CINT), a DOE Office of Basic Energy Sciences user facility.

Author information



Corresponding author

Correspondence to Ioannis N. Mastorakos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mastorakos, I.N., Schoeppner, R.L., Kowalczyk, B. et al. The effect of size and composition on the strength and hardening of Cu–Ni/Nb nanoscale metallic composites. Journal of Materials Research 32, 2542–2550 (2017).

Download citation