Continuum modeling of B4C densification during Spark Plasma Sintering


Boron carbide (B4C) powder was consolidated at 45 MPa by Spark Plasma Sintering (SPS) for 20 min from 1450 to 2000 °C. The density of the B4C reached 99.6% at 2000 °C. A continuum model was applied to describe the densification mechanism of B4C powder under SPS conditions. The shrinkage rate was sensitive to particle size and temperature. The effect of porosity on thermal diffusion was significant, especially for small particle sizes. It appears that there is Joule heating, discharge, and electromagnetic field involved during the SPS of B4C. The current can enhance the sintering process, and it can obviously reduce the creep activation energy.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6


  1. 1.

    F. Thevenot: A review on boron carbide. Key Eng. Mater. 56/57, 59 (1991).

    Article  Google Scholar 

  2. 2.

    R.R. Ridgway: Boron carbide: A new crystalline abrasive and wear resisting product. Trans. Am. Electrochem. Soc. 66, 117 (1934).

    Article  Google Scholar 

  3. 3.

    H.K. Clark and J.L. Hoard: The crystal structure of boron carbide. J. Am. Chem. Soc. 65(11), 2115 (1943).

    CAS  Article  Google Scholar 

  4. 4.

    G.H. Tang, X.H. Zhang, and C.L. Chen: A comprehensive review on boron carbide. Materials Review 4, 69 (1994).

    Google Scholar 

  5. 5.

    F. Wu and J. Lu: Applications and the properties of boron carbide ceramic material. Journal of Wuyi University 16, 45 (2002).

    Google Scholar 

  6. 6.

    L.Z. Pei, H.N. Xiao, B.J. Zhu, and W. Tan: Latest development of boron carbide powder and diphase ceramics. Rare Met. Cem. Carbides 32, 46 (2004).

    CAS  Google Scholar 

  7. 7.

    K.W. Bai, Y.L. Wang, and J.F. Yang: The influence of hot pressing parameters on the microstructures and mechanical properties of boron carbide. Journal of Xi’an Jiaotong University 28, 73 (1994).

    CAS  Google Scholar 

  8. 8.

    B. Mu, H. Zhang, and L. Tang: Influence of the preparation technology on the properties of boron carbide. Powder Metall. Technol. 25, 275 (2007).

    Google Scholar 

  9. 9.

    R.G. Lange, Z.A. Munir, and J.B. Holt: Sintering kinetics of pure and doped boron carbide. Mater. Sci. Res. 13, 311 (1980).

    CAS  Google Scholar 

  10. 10.

    V. Skorokhod, M.D. Vlajic, and V.D. Krstic: Mechanical properties of pressureless sintered boron carbide containing TiB2 phase. J. Mater. Sci. Lett. 15, 1337 (1996).

    CAS  Article  Google Scholar 

  11. 11.

    L.S. Sigl: Processing and mechanical properties of boron carbide sintered with TiC. J. Eur. Ceram. Soc. 18, 1521 (1998).

    CAS  Article  Google Scholar 

  12. 12.

    L.S. Wang: Special Ceramic, 2nd ed. (Central South Univ. press, Changsha, 2005); p. 186.

    Google Scholar 

  13. 13.

    X.Y. Zhou: Low temperature sintering technology of boron carbide and its influencing factors. Liaoning Chem. Ind. 40, 291 (2011).

    CAS  Google Scholar 

  14. 14.

    Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: The effect of electric field on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    R. Chaim: Densification mechanisms in spark plasma sintering of monocrystalline ceramics. Mater. Sci. Eng., A 443, 25 (2007).

    Article  CAS  Google Scholar 

  16. 16.

    P. Badica, H. Borodianska, S. Xie, T. Zhao, and D. Demirskyi: Toughness control of boron carbide obtained by spark plasma sintering in nitrogen atmosphere. Ceram. Int. 40, 3053 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    S. Hayun, S. Kalabukhov, V. Ezersky, M.P. Dariel, and N. Frage: Microstructural characterization of spark plasma sintered boron carbide ceramics. Ceram. Int. 36, 451 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    X. Li, D. Jiang, J. Zhang, Q. Lin, Z. Chen, and Z. Huang: Densification behavior and related phenomena of spark plasma sintered boron carbide. Ceram. Int. 40, 4359 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    B.M. Moshtaghioun, D. Gómez-García, S.D. Bernardi-Martín, A. Domínguez-Rodríguez, and A. Monshi: Effect of spark plasma sintering parameters on microstructure and room-temperature hardness and toughness of fine-grained boron carbide (B4C). J. Eur. Ceram. Soc. 33, 361 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    C. Xu, K. Flodström, and S. Esmaeilzadeh: Low temperature densification of B4C ceramics with CaF2/Y2O3 additives. Int. J. Refract. Met. Hard Mater. 35, 311 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    K. Sairam, J.K. Sonber, T.S.R.C. Murthy, C. Subramanian, and R.K. Fotedar: Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide. Int. J. Refract. Met. Hard Mater. 42, 185 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    E.A. Olevsky: Impact of thermal diffusion on densification during SPS. J. Am. Ceram. Soc. 92, S122 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    G. Bernard-Grainger and C. Guizard: Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification. Acta Mater. 55, 3493 (2007).

    Article  CAS  Google Scholar 

  24. 24.

    E.A. Olevsky and L. Froyen: Constitutive modeling of sparking-plasma sintering of conductive materials. Scr. Mater. 55, 1175 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    E.A. Olevsky: Consolidation enhancement in spark-plasma sintering: Impact of high heating rates. J. Appl. Phys. 102, 114913 (2007).

    Article  CAS  Google Scholar 

  26. 26.

    H.B. Wu, F.H. Zeng, and T.C. Yuan: Wettability of 2519Al on B4C at 1000–1250 °C and mechanical properties of infiltrated B4C–2519Al composites. Ceram. Int. 40, 2073 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    E.A. Olevsky and A. Molinari: Instability of sintering of porous bodies. Int. J. Plast. 16, 1 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    E.A. Olevsky and A. Molinari: Kinetics and stability in compressive and tensile loading of porous bodies. Mech. Mater. 38, 340 (2006).

    Article  Google Scholar 

  29. 29.

    R.L. Coble and W.D. Kingery: Effect of porosity on physical properties of sintered alumina. J. Am. Ceram. Soc. 39, 377 (1956).

    Article  Google Scholar 

  30. 30.

    J.C. Maxwell: A treatise on electricity and magnetism. In Thermal Conductivity of Solids, J.E. Parrott and A.D. Stuckes, eds. (Pion Lid, London, 1975).

    Google Scholar 

  31. 31.

    S.V. Konovalikhin and V.I. Ponomarev: Carbon in boron carbide: The crystal structure of B11.4C3.6. Russ. J. Inorg. Chem. 54, 197 (2009).

    Article  Google Scholar 

  32. 32.

    V. Paris, N. Frage, M.P. Dariel, and E. Zaretsky: The spall strength of silicon carbide and boron carbide ceramics processed by spark plasma sintering. Int. J. Impact. Eng. 37, 1092 (2010).

    Article  Google Scholar 

  33. 33.

    T.D. Beaudet, J.R. Smith, and J.W. Adams: Surface energy and relaxation in boron carbide ($10⋏r 11$) from first principles. Solid State Commun. 219, 43 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    E. Friedland, N.G.V.D. Berg, J.B. Malherbe, J.J. Hancke, and J. Barry: Diffusion of fission products through silicon carbide. In International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators (International Atomic Energy Agency, Vienna, 2009); p. 8.

    Google Scholar 

  35. 35.

    M.S. Koval’Chenko, Y.G. Tkachenko, L.F. Ochkas, D.Z. Yurchenko, and V.B. Vinokurov: Densification kinetics of boron carbide in hot pressing. Powder Metall. Met. Ceram. 26, 881 (1987).

    Article  Google Scholar 

  36. 36.

    Y. Zeng, J.W. Feng, Y.F. Zhang, and C.X. Ding: Relationship between properties and microstructure of plasma sprayed boron carbide coating. J. Inorg. Mater. 15, 137 (2000).

    CAS  Google Scholar 

  37. 37.

    L.S. Wang: The thermal conductivity and thermal expensing coefficient for hot-pressed boron carbide. J. Cent. South Univ. Technol. 34, 111 (2003).

    Google Scholar 

  38. 38.

    F. Deng: Preparation of Submicron Boron Carbide by Mechanical Alloying (Dalian University of technology, China, 2005).

    Google Scholar 

  39. 39.

    M. Salvador, J.M. Perlado, A. Mattoni, F. Bernardini, and L. Colombo: Defect energetics of β-SiC using a new tight-binding molecular dynamics model. J. Nucl. Mater. s329–333, 1219 (2004).

    Article  CAS  Google Scholar 

  40. 40.

    E. Rauls: Annealing Mechanisms of Point Defects in Silicon Carbide. Ph.D. thesis (English), Theoretical Physics, Department of Physics, Faculty of Science, University of Paderborn, Germany, 2003.

    Google Scholar 

  41. 41.

    E.V. Aleksandrova, A.M. Ilyina, E.G. Grigoryev, and E.A. Olevsky: Contribution of electric current into densification kinetics during spark plasma sintering of conductive powder. J. Am. Ceram. Soc. 98, 3509 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    D.M. Zhang: Study on Mechanism of Pulse Electric Current Sintering of Ceramic Materials (Wuhan University of Technology, Wuhan, 2002); pp. 11–35.

    Google Scholar 

  43. 43.

    Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren: Spark plasma Sintering of alumina. J. Am. Ceram. Soc. 85, 1921 (2002).

    CAS  Article  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (Grant No. 51301210), supported by State Key Laboratory of Powder Metallurgy of Central South University and State Key Laboratory of New Ceramic and Fine Processing of Tsinghua University.

Author information



Corresponding author

Correspondence to Fanhao Zeng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Ja., Zeng, F., Zou, Z. et al. Continuum modeling of B4C densification during Spark Plasma Sintering. Journal of Materials Research 32, 3425–3433 (2017).

Download citation