Characterization and strengthening mechanism of SiC nanoparticles reinforced magnesium matrix composite fabricated by ultrasonic vibration assisted squeeze casting


SiC nanoparticles reinforced magnesium matrix composite was fabricated by ultrasonic vibration assisted squeeze casting. Since ultrasonic device could meet the use requirements according to theoretic calculation, uniform dispersion of SiC nanoparticles was expected to achieve. The grains of the composite were refined compared with the AZ91 alloy, which was related to the increase of nucleation sites during solidification and Zenner pinning effect caused by SiC nanoparticles. With increasing the ultrasonic power, grain size of the composite changed no obviously while the morphology of β-Mg17Al12 phase was significantly affected. The ultimate tensile strength, yield strength, and elongation to fracture of the composites fabricated under different ultrasonic powers were simultaneously improved compared with the AZ91 alloy. The increase of yield strength could be attributed to Hall–Petch strengthening and Orowan strengthening for the present composites. Theoretical value of the yield strength obtained by the square root method was close to the experimental value.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    D. Yu, D. Zhang, J. Sun, Y. Luo, J. Xu, H. Zhang, and F. Pan: Improving mechanical properties of ZM61 magnesium alloy by aging before extrusion. J. Alloys Compd. 690, 553 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Q. Chen, B.G. Yuan, G.Z. Zhao, D.Y. Shu, C.K. Hu, Z.D. Zhao, and Z.X. Zhao: Microstructural evolution during reheating and tensile mechanical properties of thixoforged AZ91D-RE magnesium alloy prepared by squeeze casting–solid extrusion. Mater. Sci. Eng., A 537, 25 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    C. Xu, T. Nakata, X.G. Qiao, M.Y. Zheng, K. Wu, and S. Kamado: Ageing behavior of extruded Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr (wt%) alloy containing LPSO phase and γ′ precipitates. Sci. Rep. 7, 43391 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Q. Chen, Z. Zhao, D. Shu, and Z. Zhao: Microstructure and mechanical properties of AZ91D magnesium alloy prepared by compound extrusion. Mater. Sci. Eng., A 528, 3930 (2011).

    Article  CAS  Google Scholar 

  5. 5.

    K.K. Deng, J.C. Li, F.J. Xu, and K.B. Nie: Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite. Mater. Des. 67, 72 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    H.Z. Ye and X.Y. Liu: Review of recent studies in magnesium matrix composites. J. Mater. Sci. 39 (20), 6153 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    L. Chen, J. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J. Yang, S. Mathaudhu, and X. Li: Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528, 539 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    C.S. Goh, J. Wei, L.C. Lee, and M. Gupta: Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnology 17, 1 (2005).

    Google Scholar 

  9. 9.

    Y.L. Xi, D.L. Chai, W.X. Zhang, and J.E. Zhou: Ti–6Al–4V particle reinforced magnesium matrix composite by powder metallurgy. Mater. Lett. 59, 1831 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Yao and L. Chen: Processing of B4C particulate-reinforced magnesium-matrix composites by metal-assisted melt infiltration technique. J. Mater. Sci. Technol. 30, 661 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    M. Azizieh, A.H. Kokabi, and P. Abachi: Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater. Des. 32, 2034 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    H. Dieringa: Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: A review. J. Mater. Sci. 46, 289 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    X.J. Wang, X.S. Hu, K. Wu, M.Y. Zheng, L. Zheng, and Q.J. Zhai: The interfacial characteristic of SiCp/AZ91 magnesium matrix composites fabricated by stir casting. J. Mater. Sci. 44, 2759 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    M. Karbalaei Akbari, H.R. Baharvandi, and K. Shirvanimoghaddam: Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. 66, 150 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    M. Gupta and W.L.E. Wong: Magnesium-based nanocomposites: Lightweight materials of the future. Mater. Charact. 105, 30 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    J. Lan, Y. Yang, and X. Li: Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Mater. Sci. Eng., A 386, 284 (2004).

    Article  Google Scholar 

  17. 17.

    K.B. Nie, X.J. Wang, K. Wu, X.S. Hu, and M.Y. Zheng: Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration. Mater. Sci. Eng., A 540, 123 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    M.J. Shen, X.J. Wang, M.F. Zhang, X.S. Hu, M.Y. Zheng, and K. Wu: Fabrication of bimodal size SiCp reinforced AZ31B magnesium matrix composites. Mater. Sci. Eng., A 601, 58 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    H.L. Shi, X.J. Wang, C.L. Zhang, C.D. Li, C. Ding, K. Wu, and X.S. Hu: A novel melt processing for Mg matrix composites reinforced by multiwalled carbon nanotubes. J. Mater. Sci. Technol. 32, 1303 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    H. Hu: Squeeze casting of magnesium alloys and their composites. J. Mater. Sci. 33, 1579 (1998).

    CAS  Article  Google Scholar 

  21. 21.

    M. Zhou, H. Hu, N. Li, and J. Lo: Microstructure and tensile properties of squeeze cast magnesium alloy AM50. J. Mater. Eng. Perform. 14, 539 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    A. Ramirez, M. Qian, B. Davis, T. Wilks, and D.H. StJohn: Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys. Scr. Mater. 59, 19 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    G.I. Eskin: Ultrasonic Treatment of Light Alloy Melts (Gordon and Breach Science Publishers, Amsterdam, 1998); pp. 135–240.

    Google Scholar 

  24. 24.

    J. Li, T. Momono, Y. Tayu, and Y. Fu: Application of ultrasonic treating to degassing of metal ingots. Mater. Lett. 62, 4152 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    K. Chen, Z.Q. Li, H.Z. Zhou, and W.K. Wang: Influence of high intensity ultrasonic vibration on microstructure of in situ synthesized Mg2Si/Mg composite. Trans. Nonferrous Met. Soc. China 17, 391 (2007).

    Google Scholar 

  26. 26.

    M.P. De Cicco, L.S. Turng, X. Li, and J.H. Perepezko: Nucleation catalysis in aluminum alloy A356 using nanoscale inoculants. Metall. Mater. Trans. A 42, 2323 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    E. Nes, N. Ryum, and O. Hunderi: On the zener drag. Acta Metall. 33, 11 (1985).

    CAS  Article  Google Scholar 

  28. 28.

    J.Q. Xu, L.Y. Chen, H. Choi, and X.C. Li: Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J. Phys.: Condens. Matter 24, 255304 (2012).

    CAS  Google Scholar 

  29. 29.

    Z.H. Wang, X.D. Wang, Y.X. Zhao, and W.B. Du: SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic method. Trans. Nonferrous Met. Soc. China 20, 1029 (2010).

    Article  Google Scholar 

  30. 30.

    P. Cao, Q. Ma, and D.H. StJohn: Effect of manganese on grain refinement of Mg–Al based alloys. Scr. Mater. 54, 1853 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    Q. Chen, J. Lin, D. Shu, C. Hu, Z. Zhao, F. Kang, S. Huang, and B. Yuan: Microstructure development, mechanical properties and formability of Mg–Zn–Y–Zr magnesium alloy. Mater. Sci. Eng., A 554, 129 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    C. Xu, T. Nakata, X. Qiao, M. Zheng, K. Wu, and S. Kamado: Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg–Gd–Y–Zn–Zr alloy. Sci. Rep. 7, 40846 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Z. Zhang and D.L. Chen: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 54, 1321 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    I. Shao, P.M. Vereecken, C.L. Chien, P.C. Searson, and R.C. Cammarata: Synthesis and characterization of particle-reinforced Ni/Al2O3 nanocomposites. J. Mater. Res. 17, 1412 (2002).

    CAS  Article  Google Scholar 

  35. 35.

    S.F. Hassan, M.J. Tan, and M. Gupta: High-temperature tensile properties of Mg/Al2O3 nanocomposite. Mater. Sci. Eng., A 486, 56 (2008).

    Article  CAS  Google Scholar 

  36. 36.

    Z. Zhang and D.L. Chen: Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng., A 483–484, 148 (2008).

    Article  CAS  Google Scholar 

  37. 37.

    G. Cao, J. Kobliska, H. Konishi, and X. Li: Tensile properties and microstructure of SiC nanoparticle–reinforced Mg–4Zn alloy fabricated by ultrasonic cavitation–based solidification processing. Metall. Mater. Trans. A 39, 880 (2008).

    Article  CAS  Google Scholar 

  38. 38.

    Q. Chen, D. Shu, C. Hu, Z. Zhao, and B. Yuan: Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure. Mater. Sci. Eng., A 541, 98 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    G. Cao, H. Choi, J. Oportus, H. Konishi, and X. Li: Study on tensile properties and microstructure of cast AZ91D/AlN nanocomposites. Mater. Sci. Eng., A 494, 127 (2008).

    Article  CAS  Google Scholar 

  40. 40.

    A. Sanaty-Zadeh: Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Mater. Sci. Eng., A 531, 112 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    L.H. Dai, Z. Ling, and Y.L. Bai: Size-dependent inelastic behavior of particle-reinforced metal–matrix composites. Compos. Sci. Technol. 61, 1057 (2001).

    CAS  Article  Google Scholar 

  42. 42.

    C.S. Goh, J. Wei, L.C. Lee, and M. Gupta: Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater. 55, 5115 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    Q.B. Nguyen and M. Gupta: Enhancing compressive response of AZ31B using nano-Al2O3 and copper additions. J. Alloys Compd. 490, 382 (2010).

    CAS  Article  Google Scholar 

Download references


This work was financially supported by “National Natural Science Foundation of China” (Grant Nos. 51401144 and 51471059), and the “Natural Science Foundation of Shanxi” (Grant No. 2015021067).

Author information



Corresponding author

Correspondence to Kaibo Nie.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nie, K., Deng, K., Wang, X. et al. Characterization and strengthening mechanism of SiC nanoparticles reinforced magnesium matrix composite fabricated by ultrasonic vibration assisted squeeze casting. Journal of Materials Research 32, 2609–2620 (2017).

Download citation