Enhancing the tensile and ignition response of monolithic magnesium by reinforcing with silica nanoparticulates

Abstract

Low volume fraction (0.5, 1, and 2 vol%) SiO2 reinforced magnesium nanocomposites were synthesized using powder metallurgy technique followed by hot extrusion. The nanocomposites were studied for physical, microstructural, ignition, and mechanical properties to study the influence of nanoparticulate addition on monolithic magnesium. The grain size of the developed nanocomposites was observed to marginally decrease with the addition of SiO2 nanoparticulates with 2 vol% SiO2 addition resulting in a grain size of ∼23 µm which is ∼32% lower than that of pure Mg. The ignition temperature of pure Mg was enhanced with the addition of SiO2 nanoparticulates with Mg 2 vol% SiO2 nanocomposite exhibiting an ignition temperature of 611 °C (∼20 °C greater than pure Mg and AZ31 alloy). Under room temperature tensile loading, Hall–Petch strengthening mechanism was the most dominant wherein the addition of SiO2 nanoparticulates to pure magnesium enhances the strength within 0–2 vol% range and ductility in 0–1 vol% range.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

References

  1. 1.

    H. Davy: Electro-chemical researches, on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia. Philos. Trans. R. Soc. London 98, 333 (1808).

    Article  Google Scholar 

  2. 2.

    M.M. Avedesian and H. Baker: ASM Specialty Handbook: Magnesium and Magnesium Alloys (ASM International, Materials Park, 1999).

    Google Scholar 

  3. 3.

    N. Winzer, A. Atrens, G. Song, E. Ghali, W. Dietzel, K.U. Kainer, N. Hort, and C. Blawert: A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Adv. Eng. Mater. 7, 659 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    G.L. Song and A. Atrens: Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    J. Jun, J. Kim, B. Park, K. Kim, and W. Jung: Effects of rare earth elements on microstructure and high temperature mechanical properties of ZC63 alloy. J. Mater. Sci. 40, 2659 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    T. Itoi, K. Takahashi, H. Moriyama, and M. Hirohashi: A high-strength Mg–Ni–Y alloy sheet with a long-period ordered phase prepared by hot-rolling. Scr. Mater. 59, 1155 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    I. Toda-Caraballo, E.I. Galindo-Nava, and P.E. Rivera-Díaz-del-Castillo: Understanding the factors influencing yield strength on Mg alloys. Acta Mater. 75, 287 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    S. Johnston, Z. Shi, and A. Atrens: The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks’ solution. Corros. Sci. 101, 182 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    G. Song and A. Atrens: Understanding magnesium corrosion—A framework for improved alloy performance. Adv. Eng. Mater. 5, 837 (2003).

    CAS  Article  Google Scholar 

  10. 10.

    A. Atrens, M. Liu, and N.I. Zainal Abidin: Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng., B 176, 1609 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    A. Atrens, G-L. Song, F. Cao, Z. Shi, and P.K. Bowen: Advances in Mg corrosion and research suggestions. J. Magnesium Alloys 1, 177 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    A. Atrens, G-L. Song, M. Liu, Z. Shi, F. Cao, and M.S. Dargusch: Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 17, 400 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    R. Gehrmann, M.M. Frommert, and G. Gottstein: Texture effects on plastic deformation of magnesium. Mater. Sci. Eng., A 395, 338 (2005).

    Article  CAS  Google Scholar 

  14. 14.

    J. Umeda, M. Kawakami, K. Kondoh, E.L.S. Ayman, and H. Imai: Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials. Mater. Chem. Phys. 123, 649 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    S. Seetharaman, J. Subramanian, K. Tun, A. Hamouda, and M. Gupta: Synthesis and characterization of nano boron nitride reinforced magnesium composites produced by the microwave sintering method. Materials 6, 1940 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    J. Ferguson, F. Sheykh-Jaberi, C-S. Kim, P.K. Rohatgi, and K. Cho: On the strength and strain to failure in particle-reinforced magnesium metal–matrix nanocomposites (Mg MMNCs). Mater. Sci. Eng., A 558, 193 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Q. Tan, A. Atrens, N. Mo, and M-X. Zhang: Oxidation of magnesium alloys at elevated temperatures in air: A review. Corros. Sci. 112, 734–759 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    X. Yu, B. Jiang, H. Yang, Q. Yang, X. Xia, and F. Pan: High temperature oxidation behavior of Mg–Y–Sn, Mg–Y, Mg–Sn alloys and its effect on corrosion property. Appl. Surf. Sci. 353, 1013 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    M. Liu, D.S. Shih, C. Parish, and A. Atrens: The ignition temperature of Mg alloys WE43, AZ31 and AZ91. Corros. Sci. 54, 139 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    A. Prasad, Z. Shi, and A. Atrens: Influence of Al and Y on the ignition and flammability of Mg alloys. Corros. Sci. 55, 153 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    A. Prasad, Z. Shi, and A. Atrens: Flammability of Mg–X binary alloys. Adv. Eng. Mater. 14, 772 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    P. Boris: A study of the flammability of magnesium (Federal Aviation Administration Washington DC Systems Research and Development Service, DTIC Document, 1964).

  23. 23.

    T. Marker: Evaluating the Flammability of Various Magnesium Alloys during Laboratory-and Full-scale Aircraft Fire Tests (DOT/FAA/AR-11/3; US Department of Transportation, Federal Aviation Administration, Atlantic City, 2013).

    Google Scholar 

  24. 24.

    S. Tekumalla and M. Gupta: An insight into ignition factors and mechanisms of magnesium based materials: A review. Mater. Des. 113, 84 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    P-y. Lin, H. Zhou, N. Sun, W-p. Li, C-t. Wang, M-x. Wang, Q-c. Guo, and W. Li: Influence of cerium addition on the resistance to oxidation of AM50 alloy prepared by rapid solidification. Corros. Sci. 52, 416 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    R. Arrabal, A. Pardo, M. Merino, M. Mohedano, P. Casajús, K. Paucar, and E. Matykina: Oxidation behavior of AZ91D magnesium alloy containing Nd or Gd. Oxid. Met. 76, 433 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    J-K. Lee and S.K. Kim: Effect of CaO addition on the ignition resistance of Mg-Al alloys. Mater. Trans. 52, 1483 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    T.D. Nguyen and D.B. Lee: Oxidation of AM60B Mg alloys containing dispersed SiC particles in air at temperatures between 400 and 550 °C. Oxid. Met. 73, 183 (2009).

    Article  CAS  Google Scholar 

  29. 29.

    G.K. Meenashisundaram and M. Gupta: Emerging environment friendly, magnesium-based composite technology for present and future generations. JOM 68, 1890 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    O.W. Flörke, H.A. Graetsch, F. Brunk, L. Benda, S. Paschen, H.E. Bergna, W.O. Roberts, W.A. Welsh, C. Libanati, M. Ettlinger, D. Kerner, M. Maier, W. Meon, R. Schmoll, H. Gies, and D. Schiffmann: Silica, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2000).

    Google Scholar 

  31. 31.

    I. Fanderlik: Silica Glass and its Application (Elsevier, New York, 2013).

    Google Scholar 

  32. 32.

    Y. Wan, T. Cui, W. Li, C. Li, J. Xiao, Y. Zhu, D. Ji, G. Xiong, and H. Luo: Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route. Mater. Des. 99, 521 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    G. Parande, V. Manakari, G.K. Meenashisundaram, and M. Gupta: Enhancing the hardness/compression/damping response of magnesium by reinforcing with biocompatible silica nanoparticulates. Int. J. Mater. Res. 107, 1091 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    X. Kang, J. Zhang, Q. Zhang, K. Du, and Y. Tang: Studies on ignition and afterburning processes of KClO4/Mg pyrotechnics heated in air. J. Therm. Anal. Calorim. 109, 1333 (2011).

    Article  CAS  Google Scholar 

  35. 35.

    R.M. German: Powder Metallurgy Science (Metal Powder Industries Federation, Princeton, NJ, USA, 1984); p. 279.

    Google Scholar 

  36. 36.

    F. Mirza and D. Chen: A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites. Materials 8, 5138 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    N. Stanford, D. Atwell, A. Beer, C. Davies, and M. Barnett: Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scr. Mater. 59, 772 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    N.P. Bansal and R.H. Doremus: Handbook of Glass Properties (Elsevier, Orlando, 2013).

    Google Scholar 

  39. 39.

    J.F. Shackelford, Y-H. Han, S. Kim, and S-H. Kwon: CRC Materials Science and Engineering Handbook (CRC Press, Boca Raton, Florida, 2016).

    Google Scholar 

  40. 40.

    G.K. Meenashisundaram, M.H. Nai, A. Almajid, and M. Gupta: Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications. Mater. Des. 65, 104 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    S. Jayalakshmi, S. Sankaranarayanan, S. Koh, and M. Gupta: Effect of Ag and Cu trace additions on the microstructural evolution and mechanical properties of Mg–5Sn alloy. J. Alloys Compd. 565, 56 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    K.S. Tun, P. Jayaramanavar, Q.B. Nguyen, J. Chan, R. Kwok, and M. Gupta: Investigation into tensile and compressive responses of Mg–ZnO composites. Mater. Sci. Technol. 28, 582 (2013).

    Article  CAS  Google Scholar 

  43. 43.

    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51, 2055 (2003).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Mr. Ng Hong Wei, National University of Singapore for his assistance in the CTE and TGA measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manoj Gupta.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parande, G., Manakari, V., Meenashisundaram, G.K. et al. Enhancing the tensile and ignition response of monolithic magnesium by reinforcing with silica nanoparticulates. Journal of Materials Research 32, 2169–2178 (2017). https://doi.org/10.1557/jmr.2017.194

Download citation