Fabrication and characterization of superelastic Ti–Nb alloy enhanced with antimicrobial Cu via spark plasma sintering for biomedical applications

Abstract

A superelastic Ti–40Nb alloy enhanced with Cu element (0, 2.5, 5, 7.5, and 10 wt%) was synthesized by a spark plasma sintering method to obtain biomaterials with an antimicrobial effect. The microstructure results showed that β phase was the main phase in (Ti–40Nb)–Cu alloys while Ti2Cu was synthesized with the Cu addition above 5 wt%. (Ti–40Nb)–Cu alloys exhibited high compressive strength over 1693.08 MPa, high yield strength of 1140.26–1619.14 MPa, low elastic modulus in the range of 43.91–58.01 GPa, low elastic energy (14.81–24.73 MJ/m3), and together with large plastic strain over 18.5%. High concentration of Cu ion released steadily from alloys in early 7 days, then the released concentration of Cu ion showed long-lasting and moderate. Comparing with the Ti–40Nb alloy, high antimicrobial activity was pronounced on (Ti–40Nb)–Cu alloys, and (Ti–40Nb)–Cu alloys showed more inhibitory activity against bacteria (E. coli and S. aureus) than fungi (C. albicans). Cu contents in alloys influenced the Cu ion release, which in turn affected the antimicrobial activity. As a good combination of low elastic modulus, high mechanical properties, good elastic energy, and excellent antimicrobial performance, (Ti–40Nb)–Cu alloys offer potential advantages to prevent stress shielding and exhibit an excellent antimicrobial property for hard tissue replacements.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

References

  1. 1.

    Q.Z. Chen and G.A. Thouas: Metallic implant biomaterials. Mater. Sci. Eng., R 87, 1–57 (2015).

    Article  Google Scholar 

  2. 2.

    Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, and R. Yang: Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater. 3, 277–286 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    H. Baker, H. Okamoto, and S.D. Henry: ASM Handbook: Alloy Phase Diagrams, Vol. 3 (ASM International Materials Park, Ohio, 1992).

    Google Scholar 

  4. 4.

    J. Fu, A. Yamamoto, H.Y. Kim, H. Hosoda, and S. Miyazaki: Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomater. 17, 56–67 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    S. Miyazaki, H.Y. Kim, and H. Hosoda: Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater. Sci. Eng., A 438, 18–24 (2006).

    Article  Google Scholar 

  6. 6.

    W.H. Harris and C.B. Sledge: Total hip and total knee replacement. N. Engl. J. Med. 323, 725–731 (1990).

    CAS  Article  Google Scholar 

  7. 7.

    F. Heidenau, W. Mittelmeier, R. Detsch, M. Haenle, F. Stenzel, G. Ziegler, and H.A. Gollwitzer: A novel antibacterial titania coating: Metal ion toxicity and in vitro surface colonization. J. Mater. Sci.: Mater. Med. 16, 883–888 (2005).

    CAS  Google Scholar 

  8. 8.

    H. Waizy, J.M. Seitz, J. Reifenrath, A. Weizbauer, F.W. Bach, A. Meyer-Lindenberg, B. Denkena, and H. Windhagen: Biodegradable magnesium implants for orthopedic applications. J. Mater. Sci. 48, 39–50 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Y.F. Ding, C. Wen, P. Hodgson, and Y. Li: Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review. J. Mater. Chem. B 2, 1912–1933 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    A.B. Abdelmageed and F.W. Oehme: A review on biochemical roles, toxicity and interactions of zinc, copper and iron: IV. Interactions. Vet. Hum. Toxicol. 32, 456–458 (1990).

    CAS  Google Scholar 

  11. 11.

    M. Morakabati, S. Kheirandish, M. Aboutalebi, A.K. Taheri, and S.M. Abbasi: The effect of Cu addition on the hot deformation behavior of NiTi shape memory alloys. J. Alloys Compd. 499, 57–62 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    E. Zhang, L. Zheng, J. Liu, B. Bai, and C. Liu: Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys. Mater. Sci. Eng., C 46, 148–157 (2015).

    Article  Google Scholar 

  13. 13.

    E. Zhang, F. Li, H. Wang, J. Liu, C. Wang, and M. Li: A new antibacterial titanium–copper sintered alloy: Preparation and antibacterial property. Mater. Sci. Eng., C 33, 4280–4287 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    F.C. Holden, A.A. Watts, H.R. Ogden, and R.I. Jaffee: Heat treatment and mechanical properties of Ti–Cu alloys. Trans. AIME 7, 117–125 (1955).

    CAS  Google Scholar 

  15. 15.

    G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip, and R.P. Allaker: Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 33, 587–590 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    M. Calin, A. Helth, J.J. Gutierrez, M. Bönisch, V. Brackmann, and L. Giebeler: Elastic softening of beta-type Ti–Nb alloys by indium (In) additions. J. Mech. Behav. Biomed. Mater. 39, 162–174 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    M.U. Farooq, F.A. Khalid, H. Zaigham, and I.H. Abidi: Superelastic behaviour of Ti–Nb–Al ternary shape memory alloys for biomedical applications. Mater. Lett. 121, 58–61 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    C.M. Lee, C.P. Ju, and J.H. Chern-Lin: Structure–property relationship of cast Ti–Nb alloys. J. Oral Rehabil. 29, 314–322 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    J.L. Murray and H. Baker: Alloy Phase Diagrams (ASM International, Metals Park, Ohio, 1987); p. 180.

    Google Scholar 

  20. 20.

    K. Otsuka and C.M. Wayman: Shape Memory Materials, 1st ed. (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  21. 21.

    A.O.F. Hayama, P.N. Andrade, A. Cremasco, R.J. Contieri, C.R.M. Afonso, and R. Caram: Effects of composition and heat treatment on the mechanical behavior of Ti–Cu alloys. Mater. Des. 55, 1006–1013 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    H.J. Lee and H.I. Aaronson: Eutectoid decomposition mechanisms in hypoeutectoid Ti–X alloys. J. Mater. Sci. 23, 150–160 (1988).

    CAS  Article  Google Scholar 

  23. 23.

    D.C. Zhang, Y.F. Mao, Y.L. Li, J.J. Li, M. Yuan, and J.G. Lin: Effect of ternary alloying elements on microstructure and superelasticity of Ti–Nb alloys. Mater. Sci. Eng., A 559, 706–710 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Y.H. Hon, J.Y. Wang, and Y.N. Pan: Influence of hafnium content on mechanical behaviors of Ti–40Nb–x Hf alloys. Mater. Lett. 58, 3182–3186 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    W.H. Graft, D.W. Levinson, and W. Rostoker: The influence of alloying on the elastic modulus of titanium alloys. ASM Trans. 49, 263–279 (1957).

    Google Scholar 

  26. 26.

    R.L. Fleischer, R.S. Gilmore, and R.J. Zabala: Elastic moduli of polycrystalline, intermetallic compounds of titanium. J. Appl. Phys. 64, 2964–2967 (1988).

    CAS  Article  Google Scholar 

  27. 27.

    X. Yao, Q.Y. Sun, L. Xiao, and J. Sun: Effect of Ti2Cu precipitates on mechanical behavior of Ti–2.5Cu alloy subjected to different heat treatments. J. Alloys Compd. 484, 196–202 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    S. Ozan, J. Lin, Y. Li, R. Ipek, and C. Wen: Development of Ti–Nb–Zr alloys with high elastic admissible strain for temporary orthopedic devices. Acta Biomater. 20, 176–187 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Zhan, C. Li, and W. Jiang: β-type Ti–10Mo–1.25Si–x Zr biomaterials for applications in hard tissue replacements. Mater. Sci. Eng., C 32, 1664–1668 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    V. Stranak, H. Wulff, P. Ksirova, C. Zietz, and S. Drache: Ionized vapor deposition of antimicrobial Ti–Cu films with controlled copper release. Thin Solid Films 550, 389–394 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    World Health Organization: Trace Elements in Human Nutrition and Health (WHO, Geneva, 1996).

    Google Scholar 

  32. 32.

    T. Shirai, H. Tsuchiya, T. Shimizu, K. Ohtani, Y. Zen, and K. Tomita: Prevention of pin tract infection with titanium–copper alloys. J. Biomed. Mater. Res., Part B 91, 373–380 (2009).

    Article  Google Scholar 

  33. 33.

    J. Liu, F. Li, C. Liu, H. Wang, B. Ren, K. Yang, and E. Zhang: Effect of Cu content on antibacterial activity of titanium–copper sintered alloys. Mater. Sci. Eng., C 35, 392–400 (2014).

    Article  Google Scholar 

  34. 34.

    D.J. Horton, H. Ha, L.L. Foster, H.J. Bindig, and J.R. Scully: Tarnishing and Cu ion release in selected copper-base alloys: Implications towards antimicrobial functionality. Electrochim. Acta 169, 351–366 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    R.B. Thurman and C.P. Gerba: The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. CRC Crit. Rev. Environ. Control 18, 295–315 (1989).

    Article  Google Scholar 

  36. 36.

    A. Samuni, M. Chevion, and G. Czapski: Roles of copper and superoxide anion radicals in the radiation-induced inactivation of T7 bacteriophage. Radiat. Res. 99, 562–572 (1984).

    CAS  Article  Google Scholar 

  37. 37.

    A. Yamamoto, R. Honma, and M. Sumita: Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J. Biomed. Mater. Res. 39, 331–340 (1998).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This research is jointly supported by the Natural Science Foundation of China under Grant No. 31660262 and the Innovation Platform Construction Project of Science and Technology of Yunnan province under Grant No. 2013DH012.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuqin Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Y., Zhang, Y., Jiang, Y. et al. Fabrication and characterization of superelastic Ti–Nb alloy enhanced with antimicrobial Cu via spark plasma sintering for biomedical applications. Journal of Materials Research 32, 2510–2520 (2017). https://doi.org/10.1557/jmr.2017.191

Download citation