Structure and electrochemical performance of LiFePO4 modified with mononuclear and binuclear phthalocyanines as cathode materials

Abstract

Two series of lithium iron phosphate (LiFePO4) nanocomposites are prepared by a solvothermal method coupled with high temperature calcination using mononuclear and binuclear metal hexaaminophthalocyanines as modulatory additives, respectively. Physical and electrochemical performances of the composites as cathode materials of lithium-ion batteries are characterized by inductively coupled plasma (ICP), X-ray diffraction (XRD), infrared (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical techniques. The results indicate that the as-synthesized samples modified with binuclear metal phthalocyanines can improve electrochemical properties of LiFePO4 (LFP) for lithium-ion batteries. The composite using binuclear manganese hexaaminophthalocyanine as additive can achieve the highest initial specific discharge capacity of 152.3 mAh/g at 0.1 C, higher than that of ones modified with the corresponding mononuclear phthalocyanine 143.0 mAh/g. Furthermore, the most excellent product exhibits a pretty good capacity retention of 93.0% after 50 cycles at 0.1 C, cycling stability, and low charge transfer resistance of 58.7 Ω.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    J.B. Goodenough and Y. Kim: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2009).

    Article  CAS  Google Scholar 

  2. 2.

    J.B. Goodenough and K.S. Park: The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135, 1167 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    M.K. Devaraju and I. Honma: Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries. Adv. Energy Mater. 2, 284 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Q. Fan, L. Lei, and X. Xu: Direct growth of FePO4/graphene and LiFePO4/graphene hybrids for high rate Li-ion batteries. J. Power Sources 257, 65 (2013).

    Article  CAS  Google Scholar 

  5. 5.

    B.L. Ellis, K.T. Lee, and L.F. Nazar: Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    T.F. Liu, L. Zhao, J.S. Zhu, B. Wang, C.F. Guo, and D.L. Wang: Challenges for rechargeable Li batteries. Chem. Mater. 2, 2822 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    J. Wang and X. Sun: Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ. Sci. 5, 5163 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    H. Zhang, Y. Xu, C. Zhao, X. Yang, and Q. Jiang: Effects of carbon coating and metal ions doping on low temperature electrochemical properties of LiFePO4 cathode material. Electrochim. Acta 83, 341 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    L.X. Li, X.C. Tang, H.T. Liu, Y. Qu, and Z.G. Lu: Morphological solution for enhancement of electrochemical kinetic performance of LiFePO4. Electrochim. Acta 56, 995 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    A. Yamada, S.C. Chung, and K. Hinokuma: Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    Y. Xia, W.K. Zhang, H. Huang, Y.P. Gan, J. Tian, and X.Y. Tao: Self-assembled mesoporous LiFePO4 with hierarchical spindle-like architectures for high-performance lithium-ion batteries. J. Power Sources 196, 5651 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    S. Praneetha and A. Vadivel Murugan: A rapid, one-pot microwave-solvothermal synthesis of a hierarchical nanostructured graphene/LiFePO4 hybrid as a high performance cathode for lithium ion batteries. RSC Adv. 3, 25403 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    B. Wang, B. Xu, T. Liu, P. Liu, C. Guo, S. Wang, Q. Wang, Z. Xiong, D. Wang, and X.S. Zhao: Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Nanoscale 6, 986 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    R. Wang, R. Zhang, B. Xu, F. Yang, and J. Zhao: Highly improving the electrochemical performance of LiFePO4 modified by metal phthalocyanines as cathode materials. J. Mater. Res. 30, 645 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    R.Q. Wang, R.L. Zhang, B. Xu, F. Yang, J.S. Zhao, S.C. Zhang, and J.L. Wang: Metal tetrabromophthalocyanines mediate the structure and electrochemical performance of lithium iron phosphate as cathode materials for lithium-ion batteries. J. Electroanal. Chem. 755, 47 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    G. Ramos-Sanchez, A. Callejas-Tovar, L.G. Scanlon, and P.B. Balbuena: DFT analysis of Li intercalation mechanisms in the Fe-phthalocyanine cathode of Li-ion batteries. Phys Chem Chem Phys 16, 743 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    R.L. Zhang, R.Q. Wang, and K. Luo: Multi-walled carbon nanotubes chemically modified by cobalt tetraaminophthalocyanines with excellent electrocatalytic activity to Li/SOCl2 battery. J. Electrochem. Soc. 161, H941 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    B. Xu, R.L. Zhang, J.F. Wang, and J.S. Zhao: Investigation of binuclear metal phthalocyanines as electrocatalysts for Li/SOCl2 battery. J. Solid State Electrochem. 17, 2391 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    R. Wang, R. Zhang, B. Xu, F. Yang, and J. Zhao: Highly improving the electrochemical performance of LiFePO4 modified by metal phthalocyanines as cathode materials. J. Mater. Res. 30, 645 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Qiao, L. Pan, and P. Jia: Effect of magnetic treatment on microstructure and cycle performance of LiFePO4/C cathode material. Mater. Lett. 137, 432 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    X. Hairong, Z. Jianqing, W. Tao, G. Hu, F. Xiaoli, and H. Jianping: Facile and economical synthesis for “plum pudding”-shaped porous LiFePO4/carbon composites for lithium ion batteries. RSC Adv. 4, 39400 (2014).

    Article  CAS  Google Scholar 

  22. 22.

    Y. Xie, F. Song, C. Xia, and H. Du: Preparation of carbon-coated lithium iron phosphate/titanium nitride for a lithium-ion supercapacitor. New J. Chem. 39, 604 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    L. Wang, X. He, and W. Sun: Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials. Nano Lett. 12, 5632 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    L.F. Di, G. Meligrana, C. Gerbaldi, S. Bodoardo, and N. Penazzi: Surfactant-assisted mild solvothermal synthesis of nanostructured LiFePO4/C cathodes evidencing ultrafast rate capability. Electrochim. Acta 156, 188 (2015).

    Article  CAS  Google Scholar 

  25. 25.

    X. Xu, Y. Xu, H. Zhang, M. Ji, and H. Dong: The effect of NiO as graphitization catalyst on the structure and electrochemical performance of LiFePO4/C cathode materials. Electrochim. Acta 158, 348 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    A. Örnek and O. Efe: Doping qualifications of LiFe1−xMgxPO4–C nano-scale composite cathode materials. Electrochim. Acta 166, 338 (2015).

    Article  CAS  Google Scholar 

  27. 27.

    N. Bai, H. Chen, W. Zhou, K. Xiang, Y. Zhang, C. Li, and H. Lu: Preparation and electrochemical performance of LiFePO4/C microspheres by a facile and novel co-precipitation. Electrochim. Acta 167, 172 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    A. Yamada, S.C. Chung, and K. Hinokuma: Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224 (2001).

    CAS  Article  Google Scholar 

  29. 29.

    D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405 (2002).

    CAS  Article  Google Scholar 

  30. 30.

    D. Ostrovskii, F. Ronci, B. Scrosati, and P. Jacobsson: A FTIR and Raman study of spontaneous reactions occurring at the LiNiyCo(1− y)O2 electrode/non-aqueous electrolyte interface. J. Power Sources 94, 183 (2001).

    CAS  Article  Google Scholar 

  31. 31.

    K.A. Striebel, E. Sakai, and E.J. Cairns: Impedance studies of the thin film LiMn2O4/electrolyte interface. J. Electrochem. Soc. 149, A61 (2002).

    CAS  Article  Google Scholar 

  32. 32.

    L. Wang, W. Sun, and X. Tang: Nano particle LiFePO4 prepared by solvothermal process. J. Power Sources 244, 94 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    J.Y. Xiang, J.P. Tu, and L. Zhang: Improved electrochemical performances of 9LiFePO4·Li3V2(PO4)/C composite prepared by a simple solid-state method. J. Power Sources 195, 8331 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    T. Muraliganth, A.V. Murugan, and A. Manthiram: Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries. J. Mater. Chem. 18, 5661 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    H. Shu, X. Wang, and Q. Wu: Improved electrochemical performance of LiFePO4/C cathode via Ni and Mn co-doping for lithium-ion batteries. J. Power Sources 237, 149 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    X. Wang, H. Hao, J. Liu, T. Huang, and A. Yu: A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim. Acta 56, 4065 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    X.Y. Wang, Q. Cheng, T. Huang, and A.S. Tao: Effect of calcination atmosphere on Li/Ni disorder and electrochemical performance of layered LiNi0.5Mn0.5O2. Acta Phys.-Chim. Sin. 27, 437 (2011).

    Article  Google Scholar 

  38. 38.

    H. Liu, C. Li, and H.P. Zhang: Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J. Power Sources 159, 717 (2006).

    CAS  Article  Google Scholar 

  39. 39.

    L. Ji, Y. Yao, and O. Toprakci: Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J. Power Sources 195, 2050 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    C. Delacourt, C. Wurm, and L. Laffont: Electrochemical and electrical properties of Nb- and/or C. Solid State Ionics 177, 333 (2006).

    CAS  Article  Google Scholar 

  41. 41.

    M.B. Sahana, S. Vasu, N. Sasikala, S. Anandan, H. Sepehri-Amin, C. Sudakar, and R. Gopalan: Raman spectral signature of Mn-rich nanoscale phase segregations in carbon free LiFe1−xMnxPO4 prepared by hydrothermal technique. RSC Adv. 4, 64429 (2014).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the National Natural Science Foundation of China (Nos. 21401149 and 21371143) and Natural Science Foundation of Shaanxi Province (No. 2015JM2062) for the financial support of this work.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ronglan Zhang or Jianshe Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Wang, R., Zhang, R. et al. Structure and electrochemical performance of LiFePO4 modified with mononuclear and binuclear phthalocyanines as cathode materials. Journal of Materials Research 32, 1168–1176 (2017). https://doi.org/10.1557/jmr.2017.16

Download citation