Understanding phase equilibria and segregation in Bridgman growth of Cs2LiYCl6 scintillator


Cs2LiYCl6 (CLYC) is a commercial scintillator material having good energy resolution and dual gamma/neutron detection capabilities. CLYC crystals currently used in detectors are grown by the vertical Bridgman method. Boules grown from stoichiometric melts, however, often contain secondary phases, Cs3YCl6 and LiCl, at the beginning and end of the crystal, respectively, suggesting that this composition is incongruently melting. Since no phase diagram containing CLYC existed in the literature prior to this study, the Cs2YCl5–LiCl phase diagram was explored. Several crystals were then grown from various melt compositions. As predicted from the phase diagram, a starting composition of around 60 mol% LiCl did not produce Cs3YCl6 and maintained a low concentration of LiCl.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    C.M. Combes, P. Dorenbos, C.W.E. van Eijk, K.W. Kramer, and H.U. Godel: Optical and scintillation properties of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6:Ce3+ crystals. J. Lumin. 82, 299 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Kramer, and H.U. Güdel: Scintillation and spectroscopy of the pure and Ce3+-doped elpasolites: Cs2LiYX6 (X = Cl; Br). J. Phys.: Condens. Matter 14, 8481 (2002).

    Google Scholar 

  3. 3.

    A. Bessiere, P. Dorenbos, C.W.E. van Eijk, K.W. Kramer, and H.U. Güdel: New thermal neutron scintillators: Cs2LiYCl6:Ce and Cs2LiYBr6:Ce. IEEE Trans. Nucl. Sci. 51, 2970 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    A. Bessiere, P. Dorenbos, C.W.E. van Eijk, K.W. Kramer, and H.U. Güdel: Luminescence and scintillation properties of Cs2LiYCl6:Ce for gamma and neutron detection. Nucl. Instrum. Methods Phys. Res., Sect. A 537, 242 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    J. Glodo, R. Hawrami, and K.S. Shah: Development of Cs2LiYCl6 scintillator. J. Cryst. Growth 379, 73 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    M.L. Roush, M.A. Wilson, and W.F. Hornyak: Pulse shape discrimination. Nucl. Instrum. Methods 31, 112 (1964).

    CAS  Article  Google Scholar 

  7. 7.

    W.M. Higgins, J. Glodo, U. Shirwadkar, A. Churilov, E.V.D. van Loef, R. Hawrami, G. Ciampi, C. Hines, and K.S. Shah: Bridgman growth of Cs2LiYCl6:Ce and 6Li-enriched Cs26LiYCl6:Ce crystals for high resolution gamma ray and neutron spectrometers. J. Cryst. Growth 312, 1216 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    J. Lejay, S. Blahuta, V. Ouspenski, P. Menge, and D. Richaud: Large CLYC:Ce and CLLB:Ce Crystals For Gamma-Neutron Detection Systems. Conference poster, http://voss-associates.com/downloads/Large%20CLYC%20and%20CLLB%20crystals%20St.%20Gobain.pdf.

  9. 9.

    A.N. Christensen: Crystal growth of incongruently melting compounds. J. Cryst. Growth 62, 320 (1983).

    CAS  Article  Google Scholar 

  10. 10.

    H.J. Seifert and D. Büchel: Ternary chlorides in the systems ACl/YCl3 (A = Cs, Rb, K, Na). Z. Anorg. Allg. Chem. 624, 342 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    Y. Sun, G. Bian, W. Tao, C. Zhai, M. Zhong, and Z. Qiao: Thermodynamic optimization and calculation of the YCl3-ACl (A = Li, Na, K, Rb, Cs) phase diagrams. CALPHAD 39, 1 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    E. Korreng: The binary system lithium chloride–cesium chloride. Z. Anorg. Allg. Chem. 91, 194 (1915).

    CAS  Article  Google Scholar 

  13. 13.

    M. Zhao, L. Song, and X. Fan: The Boundary Theory of Phase Diagrams and its Application (Science Press Beijing, Beijing, China, 2009).

    Google Scholar 

  14. 14.

    F.N. Rhines: Phase Diagrams in Metallurgy: Their Development and Application, 1st ed. (McGraw-Hill, New York, USA, 1956).

    Google Scholar 

  15. 15.

    R.C. Mackenzie: Differential Thermal Analysis, Vol. I, 1st ed. (Academic Press, New York, USA, 1970); pp. 577–578.

    Google Scholar 

  16. 16.

    A. Alper: Phase Diagrams: Materials Science and Technology, Vol. II (Academic Press, New York, USA, 1970); p. 141.

    Google Scholar 

  17. 17.

    H.E. Swanson and E. Tatge: Standard X-ray diffraction powder patterns. Natl. Bur. Stand. Circ. (U. S.) 539 (1), 62 (1953).

    Google Scholar 

  18. 18.

    G. Meyer, J. Soose, A. Moritz, V. Vitt, and Th. Holljes: Ternary rare-earth halides of the type A2MX5 (A = K, In, NH4, Rb, Cs; X = Cl, Br, I). Z. Anorg. Allg. Chem. 521, 161 (1985).

    CAS  Article  Google Scholar 

  19. 19.

    H. Mattfeld and G. Meyer: Ternary halides of the A3MX6 type. I. A3YCl6 (A = K, NH4, Rb, Cs): Synthesis, structures, thermal behavior. Some analogous chlorides of the lanthanides. Z. Anorg. Allg. Chem. 618, 13 (1992).

    CAS  Article  Google Scholar 

  20. 20.

    H.J. Seifert: Ternary chlorides of the trivalent late lanthanides: Phase diagrams, crystal structures and thermodynamic properties. J. Therm. Anal. Calorim. 83, 479 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    C. Reber, H.U. Guedel, G. Meyer, T. Schleid, and C.A. Daul: Optical, spectroscopic, and structural properties of vanadium(3+)-doped fluoride, chloride, and bromide elpasolite lattices. Inorg. Chem. 28, 3249 (1989).

    CAS  Article  Google Scholar 

Download references


We wish to thank Stanford Nano Shared Facilities for giving us access to an X-ray diffractometer, Prof. Yi Cui for allowing us to use his DTA/TGA system, and George Calvert for assistance with the dry glovebox and transparent furnace. This work was partially supported by the Department of Homeland Security contract HSHQDC-15-C-B0040.

Author information



Corresponding author

Correspondence to Francesco L. Ruta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruta, F.L., Swider, S., Lam, S. et al. Understanding phase equilibria and segregation in Bridgman growth of Cs2LiYCl6 scintillator. Journal of Materials Research 32, 2373–2380 (2017). https://doi.org/10.1557/jmr.2017.168

Download citation