Influence of fiber orientation on the tribological properties of unidirectional carbon fiber reinforced epoxy composites corroded by 10 wt% sulfuric acid solution


This study investigated the tribological behaviors of carbon fiber (CF) reinforced epoxy (EP) composites immersed in 10 wt% sulfuric acid solution for different numbers of days. The tribological properties of the composites were evaluated as a function of their different fiber orientations (0°, 45°, 90°, and normal orientation). The CF/EP composites showed a favorable anticorrosion performance, as assessed by electrochemical corrosion tests, due to the tightly stacked CF. Meanwhile, the wear tests indicated that the CF orientation had a significant effect on the tribological performance. Composites with 45° CF orientation exhibited the lowest friction coefficient, whereas those with 90° CF orientation had lowest wear rate, which was 6 times lower than that of composites with normal CF orientation. Moreover, the surface microstructures of the worn surfaces were observed by scanning electron microscopy (SEM) to determine the corresponding wear mechanisms.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9.
FIG. 10


  1. 1.

    W. Qafsaoui, M.W. Kendig, H. Perrot, and H. Takenouti: Effect of 1-pyrrolidine dithiocarbamate on the galvanic coupling resistance of intermetallics–aluminum matrix during corrosion of AA 2024-T3 in a dilute NaCl. Corros. Sci. 92, 245 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    J-Q. Su, T.W. Nelson, and C.J. Sterling: Friction stir processing of large-area bulk UFG aluminum alloys. Scr. Mater. 52 (2), 135 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    H-H. Fu, K-S. Han, and J-I. Song: Wear properties of Saffil/Al, Saffil/Al2O3/Al and Saffil/SiC/Al hybrid metal matrix composites. Wear 256 (7), 705 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    Y. Zhong, G. Xie, G. Sui, and R. Yang: Poly(ether ether ketone) composites reinforced by short carbon fibers and zirconium dioxide nanoparticles: Mechanical properties and sliding wear behavior with water lubrication. J. Appl. Polym. Sci. 119 (3), 1711 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    B. Suresha, G. Chandramohan, P. Samapthkumaran, and S. Seetharamu: Three-body abrasive wear behaviour of carbon and glass fiber reinforced epoxy composites. Mater. Sci. Eng., A 443 (1), 285 (2007).

    Article  Google Scholar 

  6. 6.

    O. Jacobs, W. Xu, B. Schädel, and W. Wu: Wear behaviour of carbon nanotube reinforced epoxy resin composites. Tribol. Lett. 23 (1), 65 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    N. Mohan, S. Natarajan, and S. KumareshBabu: Abrasive wear behaviour of hard powders filled glass fabric–epoxy hybrid composites. Mater. Des. 32 (3), 1704 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    A. Greco, R. Erck, O. Ajayi, and G. Fenske: Effect of reinforcement morphology on high-speed sliding friction and wear of PEEK polymers. Wear 271 (9), 2222 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi, and A. Mohajeri: Mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater. Des. 31 (9), 4202 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    M. Barrena, J.G. de Salazar, A. Soria, and R. Cañas: Improved of the wear resistance of carbon nanofiber/epoxy nanocomposite by a surface functionalization of the reinforcement. Appl. Surf. Sci. 289, 124 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    T. Okabe and N. Takeda: Size effect on tensile strength of unidirectional CFRP composites—Experiment and simulation. Compos. Sci. Technol. 62 (15), 2053 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    F. Jie, L. Wenbin, H. Jianfeng, C. Liyun, and Y. Chunyan: Variation of the tribological properties of carbon fabric composites in their whole service life. Tribol. Int. 99, 29 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    S. Kalia, B. Kaith, and I. Kaur: Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polym. Eng. Sci. 49 (7), 1253 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    R. Prehn, F. Haupert, and K. Friedrich: Sliding wear performance of polymer composites under abrasive and water lubricated conditions for pump applications. Wear 259 (1), 693 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    X. LiuJie, J.P. Davim, and R. Cardoso: Prediction on tribological behaviour of composite PEEK-CF30 using artificial neural networks. J. Mater. Process. Technol. 189 (1), 374 (2007).

    Article  Google Scholar 

  16. 16.

    Q. Ahsan, L.M. Lin, R.F.B. Munawar, and N. Mohamad: Effect of recycled carbon fiber reinforcement on the wear behavior of epoxy composite. J. Mater. Res. 31 (13), 1900 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    J. Jia, J. Chen, H. Zhou, L. Hu, and L. Chen: Comparative investigation on the wear and transfer behaviors of carbon fiber reinforced polymer composites under dry sliding and water lubrication. Compos. Sci. Technol. 65 (7), 1139 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    X. Pei and K. Friedrich: Erosive wear properties of unidirectional carbon fiber reinforced PEEK composites. Tribol. Int. 55, 135 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    U. Tewari, A. Harsha, A. Häger, and K. Friedrich: Solid particle erosion of carbon fibre-and glass fibre-epoxy composites. Compos. Sci. Technol. 63 (3), 549 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    B. Suresha, S. Seetharamu, and P.S. Kumaran: Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behaviour of carbon fabric reinforced epoxy composites. Wear 267 (9), 1405 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    Y.Z. Wan, H.L. Luo, Y.L. Wang, Y. Huang, Q.Y. Li, and F.G. Zhou: Friction and wear behavior of three-dimensional braided carbon fiber/epoxy composites under lubricated sliding conditions. J. Mater. Sci. 40 (17), 4475 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    A. Hammami and N. Al-Ghuilani: Durability and environmental degradation of glass–vinylester composites. Polym. Compos. 25 (6), 609 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    A.R. Jones, A. Cintora, S.R. White, and N.R. Sottos: Autonomic healing of carbon fiber/epoxy interfaces. ACS Appl. Mater. Interfaces 6 (9), 6033 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    N. Birbilis, M. Cavanaugh, and R. Buchheit: Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651. Corros. Sci. 48 (12), 4202 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    A. Pardo, M. Merino, A.E. Coy, R. Arrabal, F. Viejo, and E. Matykina: Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt% NaCl. Corros. Sci. 50 (3), 823 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    G. Zhang, H. Yu, C. Zhang, H. Liao, and C. Coddet: Temperature dependence of the tribological mechanisms of amorphous PEEK (polyetheretherketone) under dry sliding conditions. Acta Mater. 56 (10), 2182 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    L-J. Cui, H-Z. Geng, W-Y. Wang, L-T. Chen, and J. Gao: Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon 54, 277 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    G. Zhang, Z. Rasheva, and A. Schlarb: Friction and wear variations of short carbon fiber (SCF)/PTFE/graphite (10 vol%) filled PEEK: Effects of fiber orientation and nominal contact pressure. Wear 268 (7), 893 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    J. Shen, M. Top, Y. Pei, and J.T.M. De Hosson: Wear and friction performance of PTFE filled epoxy composites with a high concentration of SiO2 particles. Wear 322, 171 (2015).

    Article  Google Scholar 

  30. 30.

    S. Bahadur: The development of transfer layers and their role in polymer tribology. Wear 245 (1), 92 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    U.S. Tewari, A.P. Harsha, A.M. Häger, and K. Friedrich: Solid particle erosion of unidirectional carbon fibre reinforced polyetheretherketone composites. Wear 252 (11), 992 (2002).

    CAS  Article  Google Scholar 

  32. 32.

    Z. Rasheva, G. Zhang, and T. Burkhart: A correlation between the tribological and mechanical properties of short carbon fibers reinforced PEEK materials with different fiber orientations. Tribol. Int. 43 (8), 1430 (2010).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge the National Young Top Talents Plan of China (2013042), the National Science Foundation of China (Grant No. 51175066), the Science Foundation for Distinguished Young Scholars of Heilongjiang Province (JC201403), and the Natural Science Foundation of Heilongjiang Province (E2015034) for supporting this research.

Author information



Corresponding author

Correspondence to Huaiyuan Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, R., Wang, C. et al. Influence of fiber orientation on the tribological properties of unidirectional carbon fiber reinforced epoxy composites corroded by 10 wt% sulfuric acid solution. Journal of Materials Research 32, 801–809 (2017).

Download citation