Abstract
Zr–Co–Al alloys possess prospects of wide applications in the field of nuclear reactor cladding materials and biomedical materials. (Zr0.5Co0.5)100−xAlx (x = 1, 2, 3 at.%) alloys were prepared by the water-cooling copper mold suction casting technique, and the microstructure and compression mechanical properties of the alloys were investigated. The results showed that the as-cast Zr–Co–Al alloys mainly consisted of the B2 ZrCo phase with columnar or equiaxed grains and a small quantity of intermetallic compounds, i.e., Co2Zr and Zr2Co. The yield strength of Zr–Co–Al alloys increased with increasing Al content, but the plasticity decreased at the same time. The as-cast Zr49.5Co49.5Al1 alloy attained the highest ultimate compression strength up to 2.57 ± 0.02 GPa and the largest compression strain up to ∼54.7%. The B2 to B33 martensitic transformation that occurred during the deformation process was investigated using high resolution transmission electron microscopy. It was concluded that the enhanced plasticity of Zr49.5Co49.5Al1 alloy can be attributed to the transformation induced plasticity associated with the deformation-induced martensitic transformation.
This is a preview of subscription content, access via your institution.








References
- 1.
M. Matsuda, K. Hayashi, and M. Nishida: Ductility enhancement in B2-type Zr–Co–Ni alloys with martensitic transformation. Mater. Trans. 50, 2335 (2009).
- 2.
T. Yamaguchi, Y. Kaneno, and T. Takasugi: Room-temperature tensile property and fracture behavior of recrystallized B2-type CoZr intermetallic compound. Scr. Mater. 52, 39 (2005).
- 3.
C.J. Li, J. Tan, G. Wang, J. Bednarčík, X.K. Zhu, Y. Zhang, M. Stoica, U. Kühn, and J. Eckert: Enhanced strength and transformation-induced plasticity in rapidly solidified Zr–Co–(Al) alloys. Scr. Mater. 68, 897 (2013).
- 4.
Y. Kaneno, K. Asao, M. Yoshida, H. Tsuda, and T. Takasugi: Tensile properties of recrystallized B2 CoZr intermetallic alloys. J. Alloys Compd. 456, 125 (2008).
- 5.
M. Matsuda, T. Nishimoto, K. Matsunaga, Y. Morizono, S. Tsurekawa, and M. Nishida: Deformation structure in ductile B2-type Zr–Co–Ni alloys with martensitic transformation. J. Mater. Sci. 46, 4221 (2011).
- 6.
J. Tan, F.S. Pan, Y. Zhang, Z. Wang, M. Stoica, B.A. Sun, U. Kühn, and J. Eckert: Effect of Fe addition on glass forming ability and mechanical properties in Zr–Co–Al–(Fe) bulk metallic glasses. Mater. Sci. Eng., A 539, 124 (2012).
- 7.
M. Matsuda, Y. Iwamoto, Y. Morizono, S. Tsurekawa, K. Takashima, and M. Nishida: Enhancement of ductility in B2-type Zr–Co–Ni alloys with deformation-induced martensite and microcrack formation. Intermetallics 36, 45 (2013).
- 8.
M. Matsuda, T. Nishimoto, Y. Morizono, S. Tsurekawa, and M. Nishida: Enhancement of ductility in B2-type Zr–Co–Pd alloys with martensitic transformation. Intermetallics 19, 894 (2011).
- 9.
J. Tan, F.S. Pan, Y. Zhang, B.A. Sun, J. He, N. Zheng, M. Stoica, U. Kühn, and J. Eckert: Formation of Zr–Co–Al bulk metallic glasses with high strength and large plasticity. Intermetallics 31, 282 (2012).
- 10.
F.A. Javid, N. Mattern, S. Pauly, and J. Eckert: Martensitic transformation and thermal cycling effect in Cu–Co–Zr alloys. J. Alloys Compd. 509, S334 (2011).
- 11.
C.J. Li, J. Tan, X.K. Zhu, Y. Zhang, M. Stoica, U. Kühn, and J. Eckert: On the transformation-induced work-hardening behavior of Zr47.5Co47.5Al5 ultrafine-grained alloy. Intermetallics 35, 116 (2013).
- 12.
K.K. Song, S. Pauly, Y. Zhang, S. Scudino, P. Gargarella, K.B. Surreddi, U. Kühn, and J. Eckert: Significant tensile ductility induced by cold rolling in Cu47.5Zr47.5Al5 bulk metallic glass. Intermetallics 19, 1394 (2011).
- 13.
J. Tan, Y. Zhang, M. Stoica, U. Kühn, N. Mattern, F.S. Pan, and J. Eckert: Study of mechanical property and crystallization of a ZrCoAl bulk metallic glass. Intermetallics 19, 567 (2011).
- 14.
A. Inoue, T. Zhang, and T. Masumoto: Preparation of bulky amorphous Zr–Al–Co–Ni–Cu alloys by copper mold casting and their thermal and mechanical properties. Mater. Trans. JIM 36, 391 (1995).
- 15.
W. Kurz and D.J. Fisher: Fundamentals of Solidification (Trans Tech Pub. Ltd, Zurich, 1989).
- 16.
G. Wang, N. Mattern, J. Bednarčík, R. Li, B. Zhang, and J. Eckert: Correlation between elastic structural behavior and yield strength of metallic glasses. Acta Mater. 60, 3074 (2012).
- 17.
Y. Qian, S. Zhi-Wei, L. Ju, H. Xiaoxu, X. Lin, S. Jun, and M. Evan: Strong crystal size effect on deformation twinning at meso-scale. Nature 463, 335 (2010).
- 18.
M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).
- 19.
T. Zhang, T. Yamamoto, and A. Inoue: Formation, thermal stability and mechanical properties in Zr–Al–Co bulk glassy alloys. Mater. Trans. 43, 2843 (2002).
- 20.
Y. Wang, X. Zhang, J. Qiang, Q. Wang, D. Wang, D. Li, C.H. Shek, and C. Dong: Composition optimization of the Al–Co–Zr bulk metallic glasses. Scr. Mater. 50, 829 (2004).
- 21.
X.M. Qin, J. Tan, C.J. Li, X.C. Wang, Y.H. Jiang, and R. Zhou: On the formation, mechanical properties and crystallization behaviors of a Zr56Co24Al20 bulk metallic glass. J. Alloys Compd. 647, 204 (2015).
- 22.
G. Li, H. Zhou, and T. Gao: Structural, vibrational and thermodynamic properties of zirconium–cobalt: First-principles study. J. Nucl. Mater. 424, 220 (2012).
- 23.
C.T. Liu and Z.P. Lu: Effect of minor alloying additions on glass formation in bulk metallic glasses. Intermetallics 13, 415 (2005).
- 24.
X.F. Zhang, Y.M. Wang, J.B. Qiang, Q. Wang, D.H. Wang, D.J. Li, C.H. Shek, and C. Dong: Optimum Zr–Al–Co bulk metallic glass composition Zr53Al23.5Co23.5. Intermetallics 12, 1275 (2004).
- 25.
X.F. Wei, Y.F. Sun, S.K. Guan, D. Terada, and C.H. Shek: Compressive and tensile properties of CuZrAl alloy plates containing martensitic phases. Mater. Sci. Eng., A 517, 375 (2009).
- 26.
F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter: A new view on transformation induced plasticity (TRIP). Int. J. Plast. 16, 723 (2000).
- 27.
Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing. Metall. Mater. Trans. A 29, 2245 (1998).
- 28.
J.H. Schneibel, E.D. Specht, and W.A. Simpson: Solid solution strengthening in ternary B2 iron aluminides containing 3d transition elements. Intermetallics 4, 581 (1996).
- 29.
L.A. Bendersky, J.K. Stalick, R. Portier, and R.M. Waterstrat: Crystallographic structures and phase transformations in ZrPd. J. Alloys Compd. 236, 19 (1996).
ACKNOWLEDGMENT
The authors thank the National Natural Science Foundation of China under Grant Nos. 51361017 and 51301078 for financial support.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, C., Lu, W., Tan, J. et al. Microstructure and mechanical properties of Zr–Co–Al alloys prepared by rapid solidification. Journal of Materials Research 32, 2570–2577 (2017). https://doi.org/10.1557/jmr.2017.118
Received:
Accepted:
Published:
Issue Date: