Microstructure and mechanical properties of Zr–Co–Al alloys prepared by rapid solidification

Abstract

Zr–Co–Al alloys possess prospects of wide applications in the field of nuclear reactor cladding materials and biomedical materials. (Zr0.5Co0.5)100−xAlx (x = 1, 2, 3 at.%) alloys were prepared by the water-cooling copper mold suction casting technique, and the microstructure and compression mechanical properties of the alloys were investigated. The results showed that the as-cast Zr–Co–Al alloys mainly consisted of the B2 ZrCo phase with columnar or equiaxed grains and a small quantity of intermetallic compounds, i.e., Co2Zr and Zr2Co. The yield strength of Zr–Co–Al alloys increased with increasing Al content, but the plasticity decreased at the same time. The as-cast Zr49.5Co49.5Al1 alloy attained the highest ultimate compression strength up to 2.57 ± 0.02 GPa and the largest compression strain up to ∼54.7%. The B2 to B33 martensitic transformation that occurred during the deformation process was investigated using high resolution transmission electron microscopy. It was concluded that the enhanced plasticity of Zr49.5Co49.5Al1 alloy can be attributed to the transformation induced plasticity associated with the deformation-induced martensitic transformation.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    M. Matsuda, K. Hayashi, and M. Nishida: Ductility enhancement in B2-type Zr–Co–Ni alloys with martensitic transformation. Mater. Trans. 50, 2335 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    T. Yamaguchi, Y. Kaneno, and T. Takasugi: Room-temperature tensile property and fracture behavior of recrystallized B2-type CoZr intermetallic compound. Scr. Mater. 52, 39 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    C.J. Li, J. Tan, G. Wang, J. Bednarčík, X.K. Zhu, Y. Zhang, M. Stoica, U. Kühn, and J. Eckert: Enhanced strength and transformation-induced plasticity in rapidly solidified Zr–Co–(Al) alloys. Scr. Mater. 68, 897 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Y. Kaneno, K. Asao, M. Yoshida, H. Tsuda, and T. Takasugi: Tensile properties of recrystallized B2 CoZr intermetallic alloys. J. Alloys Compd. 456, 125 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    M. Matsuda, T. Nishimoto, K. Matsunaga, Y. Morizono, S. Tsurekawa, and M. Nishida: Deformation structure in ductile B2-type Zr–Co–Ni alloys with martensitic transformation. J. Mater. Sci. 46, 4221 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    J. Tan, F.S. Pan, Y. Zhang, Z. Wang, M. Stoica, B.A. Sun, U. Kühn, and J. Eckert: Effect of Fe addition on glass forming ability and mechanical properties in Zr–Co–Al–(Fe) bulk metallic glasses. Mater. Sci. Eng., A 539, 124 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    M. Matsuda, Y. Iwamoto, Y. Morizono, S. Tsurekawa, K. Takashima, and M. Nishida: Enhancement of ductility in B2-type Zr–Co–Ni alloys with deformation-induced martensite and microcrack formation. Intermetallics 36, 45 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    M. Matsuda, T. Nishimoto, Y. Morizono, S. Tsurekawa, and M. Nishida: Enhancement of ductility in B2-type Zr–Co–Pd alloys with martensitic transformation. Intermetallics 19, 894 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    J. Tan, F.S. Pan, Y. Zhang, B.A. Sun, J. He, N. Zheng, M. Stoica, U. Kühn, and J. Eckert: Formation of Zr–Co–Al bulk metallic glasses with high strength and large plasticity. Intermetallics 31, 282 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    F.A. Javid, N. Mattern, S. Pauly, and J. Eckert: Martensitic transformation and thermal cycling effect in Cu–Co–Zr alloys. J. Alloys Compd. 509, S334 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    C.J. Li, J. Tan, X.K. Zhu, Y. Zhang, M. Stoica, U. Kühn, and J. Eckert: On the transformation-induced work-hardening behavior of Zr47.5Co47.5Al5 ultrafine-grained alloy. Intermetallics 35, 116 (2013).

    Article  Google Scholar 

  12. 12.

    K.K. Song, S. Pauly, Y. Zhang, S. Scudino, P. Gargarella, K.B. Surreddi, U. Kühn, and J. Eckert: Significant tensile ductility induced by cold rolling in Cu47.5Zr47.5Al5 bulk metallic glass. Intermetallics 19, 1394 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    J. Tan, Y. Zhang, M. Stoica, U. Kühn, N. Mattern, F.S. Pan, and J. Eckert: Study of mechanical property and crystallization of a ZrCoAl bulk metallic glass. Intermetallics 19, 567 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    A. Inoue, T. Zhang, and T. Masumoto: Preparation of bulky amorphous Zr–Al–Co–Ni–Cu alloys by copper mold casting and their thermal and mechanical properties. Mater. Trans. JIM 36, 391 (1995).

    CAS  Article  Google Scholar 

  15. 15.

    W. Kurz and D.J. Fisher: Fundamentals of Solidification (Trans Tech Pub. Ltd, Zurich, 1989).

    Google Scholar 

  16. 16.

    G. Wang, N. Mattern, J. Bednarčík, R. Li, B. Zhang, and J. Eckert: Correlation between elastic structural behavior and yield strength of metallic glasses. Acta Mater. 60, 3074 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Qian, S. Zhi-Wei, L. Ju, H. Xiaoxu, X. Lin, S. Jun, and M. Evan: Strong crystal size effect on deformation twinning at meso-scale. Nature 463, 335 (2010).

    Article  Google Scholar 

  18. 18.

    M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    T. Zhang, T. Yamamoto, and A. Inoue: Formation, thermal stability and mechanical properties in Zr–Al–Co bulk glassy alloys. Mater. Trans. 43, 2843 (2002).

    Article  Google Scholar 

  20. 20.

    Y. Wang, X. Zhang, J. Qiang, Q. Wang, D. Wang, D. Li, C.H. Shek, and C. Dong: Composition optimization of the Al–Co–Zr bulk metallic glasses. Scr. Mater. 50, 829 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    X.M. Qin, J. Tan, C.J. Li, X.C. Wang, Y.H. Jiang, and R. Zhou: On the formation, mechanical properties and crystallization behaviors of a Zr56Co24Al20 bulk metallic glass. J. Alloys Compd. 647, 204 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    G. Li, H. Zhou, and T. Gao: Structural, vibrational and thermodynamic properties of zirconium–cobalt: First-principles study. J. Nucl. Mater. 424, 220 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    C.T. Liu and Z.P. Lu: Effect of minor alloying additions on glass formation in bulk metallic glasses. Intermetallics 13, 415 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    X.F. Zhang, Y.M. Wang, J.B. Qiang, Q. Wang, D.H. Wang, D.J. Li, C.H. Shek, and C. Dong: Optimum Zr–Al–Co bulk metallic glass composition Zr53Al23.5Co23.5. Intermetallics 12, 1275 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    X.F. Wei, Y.F. Sun, S.K. Guan, D. Terada, and C.H. Shek: Compressive and tensile properties of CuZrAl alloy plates containing martensitic phases. Mater. Sci. Eng., A 517, 375 (2009).

    Article  Google Scholar 

  26. 26.

    F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter: A new view on transformation induced plasticity (TRIP). Int. J. Plast. 16, 723 (2000).

    CAS  Article  Google Scholar 

  27. 27.

    Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing. Metall. Mater. Trans. A 29, 2245 (1998).

    Article  Google Scholar 

  28. 28.

    J.H. Schneibel, E.D. Specht, and W.A. Simpson: Solid solution strengthening in ternary B2 iron aluminides containing 3d transition elements. Intermetallics 4, 581 (1996).

    CAS  Article  Google Scholar 

  29. 29.

    L.A. Bendersky, J.K. Stalick, R. Portier, and R.M. Waterstrat: Crystallographic structures and phase transformations in ZrPd. J. Alloys Compd. 236, 19 (1996).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors thank the National Natural Science Foundation of China under Grant Nos. 51361017 and 51301078 for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Caiju Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Lu, W., Tan, J. et al. Microstructure and mechanical properties of Zr–Co–Al alloys prepared by rapid solidification. Journal of Materials Research 32, 2570–2577 (2017). https://doi.org/10.1557/jmr.2017.118

Download citation