Abstract
The effect of Co on element segregation and microstructure is investigated in the third generation Ni-based single crystal superalloys with 4, 8.5, and 11.5 wt% Co addition. The results show that the increase of Co content leads to a severe element segregation in as-cast microstructure. After heat treatment, the size of γ′ phase is slightly reduced with Co content increase. During the thermal exposure, the γ′ phase coarsens gradually but its coarsening rate decreases with increasing Co content. In addition, some acicular and blocky topologically close-packed (TCP) phases are precipitated in 4% Co and 8.5% Co alloys. However, no TCP phase can be found in 11.5% Co alloy. Finally, it may be concluded that although a higher Co content is harmful for the element segregation, it is beneficial to maintain the cuboidal morphology of γ′ phase, decrease its coarsening rate, and impede the precipitation of TCP phase.
This is a preview of subscription content, access via your institution.








References
- 1.
Z. Hu, L. Liu, T. Jin, and X. Sun: Development of the Ni-base single crystal superalloys. Aeroengine 3, 1 (2005).
- 2.
J. Guo: The current situation of application and development of superalloys in the fields of energy industry. Acta Metall. Sin. 5, 513 (2010).
- 3.
R.C. Reed, T. Tao, and N. Warnken: Alloys-by-design: Application to nickel-based single crystal superalloys. Acta Mater. 57, 5898 (2009).
- 4.
S. Walston, A. Cetel, R. Mackay, K. O’Hara, D. Duhl, and R. Dreshfield: Joint development of a fourth generation single crystal superalloy. In Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds. (TMS: Warrendale, 2004); p. 1.
- 5.
P. Caron: High γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications. In Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. Mclean, S. Oison, and J.J. Schirra, eds. (TMS: Warrendale, 2000); p. 737.
- 6.
A. Sato, H. Harada, A.C. Yen, K. Kawagishi, T. Kobayashi, Y. Koizumi, T. Yokokawa, and J.X. Zhang: A 5th generation sc superalloy with balanced high temperature properties and processability. In Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, eds. (TMS: Warrendale, 2008); p. 131.
- 7.
A. Sato, A.C. Yeh, T. Kobayashi, T. Yokokawa, H. Harada, T. Murakumo, and J.X. Zhang: Fifth generation Ni based single crystal superalloy with superior elevated temperature properties. Energy Mater. 1, 19 (2007).
- 8.
G.E. Fuchs: Solution heat treatment response of a third generation single crystal Ni-base superalloy. Mater. Sci. Eng., A 300, 52 (2001).
- 9.
C.M.F. Rae and R.C. Reed: The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Mater. 49, 4113 (2001).
- 10.
R. Rettig and R.F. Singer: Numerical modelling of precipitation of topologically close-packed phases in nickel-base superalloys. Acta Mater. 59, 317 (2011).
- 11.
O. Lavigne, C. Ramusat, S. Drawin, P. Caron, D. Boivin, and J.L. Pouchou: Relationships between microstructural instabilities and mechanical behaviour in new generation nickel-based single crystal superalloys. In Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds. (TMS: Warrendale, 2004); p. 667.
- 12.
W.S. Walston, K.S. O’Hara, E.W. Ross, T.M. Pollock, and W.H. Murphy: René N6: third generation single crystal superalloy. In Superalloys 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds. (TMS: Warrendale, 1996); p. 27.
- 13.
M.V. Acharya and G.E. Fuchs: The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys. Mater. Sci. Eng., A 381, 143 (2004).
- 14.
X. Tan, J. Liu, T. Jin, Z. Hu, H.U. Hong, B.G. Choi, I.S. Kim, Y.S. Yoo, and C.Y. Jo: Effect of ruthenium on precipitation behavior of the topologically close-packed phase in a single-crystal Ni-based superalloy during high-temperature exposure. Metall. Mater. Trans. A 43, 3608 (2012).
- 15.
M.S.A. Karunaratne, C.M.F. Rae, and R.C. Reed: On the microstructural instability of an experimental nickel-based single-crystal superalloy. Metall. Mater. Trans. A 32, 2409 (2001).
- 16.
W. Wang, T. Jin, J. Liu, X. Sun, H. Guan, and Z. Hu: Role of Re and Co on microstructures and γ′ coarsening in single crystal superalloys. Mater. Sci. Eng., A 479, 148 (2008).
- 17.
G.L. Erickson: The development of the CMSX-1lB and CMSX-1lC alloys for industrial gas turbine application. In Superalloys 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds. (TMS: Warrendale, 1996); p. 45.
- 18.
G.L. Erickson: The development and application of CMSX-10. In Superalloys 1996, TMS: Warrendale, 1996); p. 35.
- 19.
M.V. Nathal, R.D. Maier, and L.J. Ebert: The influence of cobalt on the microstructure of the nickel-base superalloy MAR-M247. Metall. Trans. A 13, 1775 (1982).
- 20.
M.V. Nathal and L.J. Ebert: The influence of cobalt, tantalum, and tungsten on the microstructure of single crystal nickel-base superalloys. Metall. Trans. A 16, 1849 (1985).
- 21.
M.V. Nathal and L.J. Ebert: The influence of cobalt, tantalum, and tungsten on the elevated temperature mechanical properties of single crystal nickel-base superalloys. Metall. Trans. A 16, 1863 (1985).
- 22.
I.M. Lifshitz and V.V. Slyozov: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1–2, 35 (1961).
- 23.
C. Wagner: Theorie der alterung von niederschlägen durch umlösen. Z. Elektrochem. 7–8, 581 (1961).
- 24.
E.H. Vandermolen, J.M. Oblak, and O.H. Kriege: Control of γ′ particle size and volume fraction in the high temperature superalloy Udimet 700. Metall. Trans. 2, 1627 (1971).
- 25.
A.F. Giamei and D.L. Aanton: Rhenium additions to a Ni-base superalloy: Effects on microstructure. Metall. Trans. 16, 1997 (1985).
- 26.
W. Sun: Kinetics for coarsening co-controlled by diffusion and a reversible interface reaction. Acta Mater. 55, 313 (2007).
- 27.
Z. Chen, Y. Han, Z. Zhong, P. Wei, and M. Yan: New phase stability prediction method of nickel base single crystal superalloys. J. Aeronaut. Mater. 4, 13 (1998).
- 28.
S. Jiao, J. Zhang, T. Jin, C. Wang, H. Wang, L. Liu, and H. Fu: DTA research of a third generation Ni-based single crystal superalloy. Rare Met. Mater. Eng. 5, 1028 (2013).
- 29.
M. Fährmann, P. Fratzl, O. Paris, E. Fährmann, and W.C. Johnson: Influence of coherency stress on microstructural evolution in model Ni–Al–Mo alloys. Acta Metall. Mater. 3, 1007 (1995).
- 30.
T. Wang, G. Sheng, Z. Liu, and L. Chen: Coarsening kinetics of γ′ precipitates in the Ni–Al–Mo system. Acta Mater. 56, 5544 (2008).
- 31.
X. Qin, J. Guo, C. Yuan, G. Yang, L. Zhou, and H. Ye: μ-Phase behavior in a cast Ni-base superalloy. J. Mater. Sci. 44, 4840 (2009).
- 32.
T. Wen, J. Li, L. Liu, L. Chen, and T. Jin: Effect of long-term aging on microstructure evolution and stress rupture properties of Ni-based single crystal superalloy. Rare Met. Mater. Eng. 2, 230 (2012).
ACKNOWLEDGMENTS
This work was supported by the National High Technology Research and Development Program of China (2012AA03A511), the State Key Program of National Natural Science of China (51331005), the Natural Science Foundation of Shaanxi Province (2014JM622), the NWPU Foundation for Basic Research (3102014JCQ01022), and the Advanced Aeroengine Collaborative Innovation Center of China.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, B., Zhang, J., Huang, T. et al. Effect of Co on microstructural stability of the third generation Ni-based single crystal superalloys. Journal of Materials Research 31, 1328–1337 (2016). https://doi.org/10.1557/jmr.2016.98
Received:
Accepted:
Published:
Issue Date: