Effect of Co on microstructural stability of the third generation Ni-based single crystal superalloys

Abstract

The effect of Co on element segregation and microstructure is investigated in the third generation Ni-based single crystal superalloys with 4, 8.5, and 11.5 wt% Co addition. The results show that the increase of Co content leads to a severe element segregation in as-cast microstructure. After heat treatment, the size of γ′ phase is slightly reduced with Co content increase. During the thermal exposure, the γ′ phase coarsens gradually but its coarsening rate decreases with increasing Co content. In addition, some acicular and blocky topologically close-packed (TCP) phases are precipitated in 4% Co and 8.5% Co alloys. However, no TCP phase can be found in 11.5% Co alloy. Finally, it may be concluded that although a higher Co content is harmful for the element segregation, it is beneficial to maintain the cuboidal morphology of γ′ phase, decrease its coarsening rate, and impede the precipitation of TCP phase.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    Z. Hu, L. Liu, T. Jin, and X. Sun: Development of the Ni-base single crystal superalloys. Aeroengine 3, 1 (2005).

    Google Scholar 

  2. 2.

    J. Guo: The current situation of application and development of superalloys in the fields of energy industry. Acta Metall. Sin. 5, 513 (2010).

    Article  Google Scholar 

  3. 3.

    R.C. Reed, T. Tao, and N. Warnken: Alloys-by-design: Application to nickel-based single crystal superalloys. Acta Mater. 57, 5898 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    S. Walston, A. Cetel, R. Mackay, K. O’Hara, D. Duhl, and R. Dreshfield: Joint development of a fourth generation single crystal superalloy. In Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds. (TMS: Warrendale, 2004); p. 1.

    Google Scholar 

  5. 5.

    P. Caron: High γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications. In Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. Mclean, S. Oison, and J.J. Schirra, eds. (TMS: Warrendale, 2000); p. 737.

    Google Scholar 

  6. 6.

    A. Sato, H. Harada, A.C. Yen, K. Kawagishi, T. Kobayashi, Y. Koizumi, T. Yokokawa, and J.X. Zhang: A 5th generation sc superalloy with balanced high temperature properties and processability. In Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, eds. (TMS: Warrendale, 2008); p. 131.

    Google Scholar 

  7. 7.

    A. Sato, A.C. Yeh, T. Kobayashi, T. Yokokawa, H. Harada, T. Murakumo, and J.X. Zhang: Fifth generation Ni based single crystal superalloy with superior elevated temperature properties. Energy Mater. 1, 19 (2007).

    Article  Google Scholar 

  8. 8.

    G.E. Fuchs: Solution heat treatment response of a third generation single crystal Ni-base superalloy. Mater. Sci. Eng., A 300, 52 (2001).

    Article  Google Scholar 

  9. 9.

    C.M.F. Rae and R.C. Reed: The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Mater. 49, 4113 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    R. Rettig and R.F. Singer: Numerical modelling of precipitation of topologically close-packed phases in nickel-base superalloys. Acta Mater. 59, 317 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    O. Lavigne, C. Ramusat, S. Drawin, P. Caron, D. Boivin, and J.L. Pouchou: Relationships between microstructural instabilities and mechanical behaviour in new generation nickel-based single crystal superalloys. In Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds. (TMS: Warrendale, 2004); p. 667.

    Google Scholar 

  12. 12.

    W.S. Walston, K.S. O’Hara, E.W. Ross, T.M. Pollock, and W.H. Murphy: René N6: third generation single crystal superalloy. In Superalloys 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds. (TMS: Warrendale, 1996); p. 27.

    Google Scholar 

  13. 13.

    M.V. Acharya and G.E. Fuchs: The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys. Mater. Sci. Eng., A 381, 143 (2004).

    Article  Google Scholar 

  14. 14.

    X. Tan, J. Liu, T. Jin, Z. Hu, H.U. Hong, B.G. Choi, I.S. Kim, Y.S. Yoo, and C.Y. Jo: Effect of ruthenium on precipitation behavior of the topologically close-packed phase in a single-crystal Ni-based superalloy during high-temperature exposure. Metall. Mater. Trans. A 43, 3608 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    M.S.A. Karunaratne, C.M.F. Rae, and R.C. Reed: On the microstructural instability of an experimental nickel-based single-crystal superalloy. Metall. Mater. Trans. A 32, 2409 (2001).

    Article  Google Scholar 

  16. 16.

    W. Wang, T. Jin, J. Liu, X. Sun, H. Guan, and Z. Hu: Role of Re and Co on microstructures and γ′ coarsening in single crystal superalloys. Mater. Sci. Eng., A 479, 148 (2008).

    Article  Google Scholar 

  17. 17.

    G.L. Erickson: The development of the CMSX-1lB and CMSX-1lC alloys for industrial gas turbine application. In Superalloys 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds. (TMS: Warrendale, 1996); p. 45.

    Google Scholar 

  18. 18.

    G.L. Erickson: The development and application of CMSX-10. In Superalloys 1996, TMS: Warrendale, 1996); p. 35.

    Google Scholar 

  19. 19.

    M.V. Nathal, R.D. Maier, and L.J. Ebert: The influence of cobalt on the microstructure of the nickel-base superalloy MAR-M247. Metall. Trans. A 13, 1775 (1982).

    CAS  Article  Google Scholar 

  20. 20.

    M.V. Nathal and L.J. Ebert: The influence of cobalt, tantalum, and tungsten on the microstructure of single crystal nickel-base superalloys. Metall. Trans. A 16, 1849 (1985).

    Article  Google Scholar 

  21. 21.

    M.V. Nathal and L.J. Ebert: The influence of cobalt, tantalum, and tungsten on the elevated temperature mechanical properties of single crystal nickel-base superalloys. Metall. Trans. A 16, 1863 (1985).

    Article  Google Scholar 

  22. 22.

    I.M. Lifshitz and V.V. Slyozov: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1–2, 35 (1961).

    Article  Google Scholar 

  23. 23.

    C. Wagner: Theorie der alterung von niederschlägen durch umlösen. Z. Elektrochem. 7–8, 581 (1961).

    Google Scholar 

  24. 24.

    E.H. Vandermolen, J.M. Oblak, and O.H. Kriege: Control of γ′ particle size and volume fraction in the high temperature superalloy Udimet 700. Metall. Trans. 2, 1627 (1971).

    CAS  Google Scholar 

  25. 25.

    A.F. Giamei and D.L. Aanton: Rhenium additions to a Ni-base superalloy: Effects on microstructure. Metall. Trans. 16, 1997 (1985).

    Article  Google Scholar 

  26. 26.

    W. Sun: Kinetics for coarsening co-controlled by diffusion and a reversible interface reaction. Acta Mater. 55, 313 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Z. Chen, Y. Han, Z. Zhong, P. Wei, and M. Yan: New phase stability prediction method of nickel base single crystal superalloys. J. Aeronaut. Mater. 4, 13 (1998).

    Google Scholar 

  28. 28.

    S. Jiao, J. Zhang, T. Jin, C. Wang, H. Wang, L. Liu, and H. Fu: DTA research of a third generation Ni-based single crystal superalloy. Rare Met. Mater. Eng. 5, 1028 (2013).

    Google Scholar 

  29. 29.

    M. Fährmann, P. Fratzl, O. Paris, E. Fährmann, and W.C. Johnson: Influence of coherency stress on microstructural evolution in model Ni–Al–Mo alloys. Acta Metall. Mater. 3, 1007 (1995).

    Article  Google Scholar 

  30. 30.

    T. Wang, G. Sheng, Z. Liu, and L. Chen: Coarsening kinetics of γ′ precipitates in the Ni–Al–Mo system. Acta Mater. 56, 5544 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    X. Qin, J. Guo, C. Yuan, G. Yang, L. Zhou, and H. Ye: μ-Phase behavior in a cast Ni-base superalloy. J. Mater. Sci. 44, 4840 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    T. Wen, J. Li, L. Liu, L. Chen, and T. Jin: Effect of long-term aging on microstructure evolution and stress rupture properties of Ni-based single crystal superalloy. Rare Met. Mater. Eng. 2, 230 (2012).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National High Technology Research and Development Program of China (2012AA03A511), the State Key Program of National Natural Science of China (51331005), the Natural Science Foundation of Shaanxi Province (2014JM622), the NWPU Foundation for Basic Research (3102014JCQ01022), and the Advanced Aeroengine Collaborative Innovation Center of China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhang, J., Huang, T. et al. Effect of Co on microstructural stability of the third generation Ni-based single crystal superalloys. Journal of Materials Research 31, 1328–1337 (2016). https://doi.org/10.1557/jmr.2016.98

Download citation