Revealing the mechanical properties of potassium dihydrogen phosphate crystals by nanoindentation

Abstract

Potassium dihydrogen phosphate (KDP) is an important nonlinear optical crystal material for light frequency converters and Pockels photoelectric switches in laser systems. However, KDP is apt to fracture, is deliquescent, and can suffer from microstructural changes under a temperature variation. As such, KDP has been one of the most difficult-to-handle materials, but its properties have not been well understood. This paper aims to explore the mechanical properties of KDP crystals in detail with the aid of the nanoindentation technique using a Berkovich diamond indenter. It was found that the mechanical properties of KDP can be easily altered by machining-induced subsurface damage. It was also discovered that a KDP crystal is a visco-elasto-plastic material during micro/nanoscale deformation, although it is very brittle macroscopically.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    M.E. Lines and A.M. Glass: Principles and Applications of Ferroelectrics and Related Materials (Clarendon press, Oxford, 2001).

    Google Scholar 

  2. 2.

    R. Blinc and B. Zeks: Soft Modes in Ferroelectrics and Anti-Ferroelectrics (North-Holland Pub. Co., Amsterdam, 1974).

    Google Scholar 

  3. 3.

    J.J.D. Yoreo, A.K. Burnham, and P.K. Whitman: Developing KH2PO4 and KD2PO4 crystals for the world’s most power laser. Int. Mater. Rev. 47, 113–152 (2002).

    Article  Google Scholar 

  4. 4.

    R.A.H. Fedder, P. Geraghty, and S.N. Locke: NIF pockels cell and frequency conversion crystals. In Lasers and Applications in Science and Engineering, Monya A. Lane and Craig R. Wuest, eds. (International Society for Optics and Photonics: Bellingham, 2004); pp. 121–126.

    Google Scholar 

  5. 5.

    V.I. Salo, L. VAtroschenko, S.V. Garnov, and N.V. Khodeyeva: Structure, impurity composition and laser damage threshold of the subsurface layers in KDP and KD*P single crystals. Proc. SPIE2714, 197–201 (1996).

  6. 6.

    M.D. Feit and A.M. Rubenchik: Influence of subsurface cracks on laser-induced surface damage. In XXXV Annual Symposium on Optical Materials for High Power Lasers: Boulder Damage Symposium, International Society for Optics and Photonics: 2004; pp. 264–272.

  7. 7.

    R. House, J.R. Bettis, and A.H. Guenther: Subsurface structure and laser damage threshold. IEEE J. Quantum Electron. 13, 363–364 (1977).

    Article  Google Scholar 

  8. 8.

    J. Peng, L.C. Zhang, and X.C. Lu: Elastic-plastic deformation of KDP crystals under nanoindentation. Mater. Sci. Forum 773–774, 705–711 (2014).

    Google Scholar 

  9. 9.

    H. Endert and W. Melle: Influence of dislocations in KDP crystals on laser damage threshold. Cryst. Res. Technol. 16, 815–819 (1981).

    CAS  Google Scholar 

  10. 10.

    S. Anbukumar, S. Vasudevan, and P. Ramasamy: Hardness anisotropy of ADP crystals. Indian J. Phys. 61A, 397–405 (1987).

    CAS  Google Scholar 

  11. 11.

    T. Fang and J.C. Lambropoulos: Microhardness and indentation facture of potassium dihydrogen phosphate (KDP). J. Am. Ceram. Soc. 85, 174–178 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    K.K. Rao and D.B. Sirdeshmukh: Microhardness of some crystals with potassium dihydrogen phosphate structure. Indian J. Pure Appl. Phys. 16, 860–861 (1978).

    Google Scholar 

  13. 13.

    M.P. Shaskol’skaya, C. Hai-kuin, and M.D. Katrich: Mechanical-properties and plastic-deformation of KDP, DKDP, ADP, and RDP crystals. Inorg. Mater. 14, 558–561 (1978).

    Google Scholar 

  14. 14.

    H.X. Wang, J.H. Wang, and S. Dong: Nanoindentation size effect of KDP crystal by instrumented indentation testing. Key Eng. Mater. 364, 188–192 (2008).

    Google Scholar 

  15. 15.

    C.P. Lu, H. Gao, J.H. Wang, X.J. Teng, and B.L. Wang: Mechanical properties of potassium dihydrogen phosphate single crystal by the nanoindentation technique. Mater. Manuf. Processes 25, 740–748 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    J.H. Wang, M.J. Chen, S. Dong, H.X. Wang, J.H. Zhang, and W.J. Zong: Critical cutting condition for brittle-ductile transition of KDP crystals in ultra-precision machining. Key Eng. Mater. 329, 409–414 (2007).

    Article  Google Scholar 

  17. 17.

    S.O. Kucheyev, W.J. Siekhaus, T.A. Land, and S.G. Demos: Mechanical response KD2XH2(1−X)PO4 crystals during nanoindentation. Appl. Phys. Lett. 84, 2274–2276 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    C.H. Guin, M.D. Katrich, A.I. Savinkov, and M.P. Shaskol’skaya: Plastic strain and dislocation structure of the KDP Group crystals. Krist. Tech. 15, 479–488 (1980).

    CAS  Article  Google Scholar 

  19. 19.

    Y.J. Fu, Z.S. Gao, X. Sun, S.L. Wang, Y.P. Li, H. Zeng, J.P. Luo, A.D. Duan, and J.Y. Wang: Effects of anions on rapid growth and growth habit of KDP crystals. Prog. Cryst. Growth Charact. Mater. 40, 211–220 (2000).

    Article  Google Scholar 

  20. 20.

    H. Bei, E.P. George, J.L. Hay, and G.M. Pharr: Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys. Rev. Lett. 95, 045501 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    J.Y. Kim, S.K. Kang, and J.J. Lee: Influence of surface-roughness on indentation size effect. Acta Mater. 35, 3555–3563 (2005).

    Google Scholar 

  22. 22.

    J.D. Kiely, R.Q. Hwang, and J.E. Houston: Effect of surface steps on the plastic threshold in nanoindentation. Phys. Rev. Lett. 81, 4424–4427 (1998).

    CAS  Article  Google Scholar 

  23. 23.

    M. Goken and M. Kempf: Pop-ins in nanoindentations—The initial yield point. Z. Metallkunde 92, 1061–1067 (2001).

    CAS  Google Scholar 

  24. 24.

    Z.G. Wang, H. Bei, E.P. George, and G.M. Pharr: Influences of surface preparation on nanoindentation pop-in in single-crystal Mo. Scr. Mater. 65, 469–472 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    D.J. Wu, X.S. Chao, Q.G. Wang, B. Wang, H. Gao, and R.K. Kang: Damage detection and analysis of machined KDP crystal subsurface. Opt. Precis. Eng. 15, 1722–1726 (2007).

    Google Scholar 

  26. 26.

    C. Liu, P. Liua, Z.B. Zhao, and D.O. Northwood: Room temperature creep of a high strength steel. Mater. Des. 22, 325–328 (2001).

    Article  Google Scholar 

  27. 27.

    S. Yang, Y.W. Zhang, and K.Y. Zeng: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655–3667 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    G. González-Doncell and O.D. Sherby: High temperature creep behavior of metal matrix aluminum-SiC composites. Acta Metall. Mater. 41, 2797–2805 (1993).

    Article  Google Scholar 

  29. 29.

    S.H. Wang and W.X. Chen: Room temperature creep deformation and its effect on yielding behavior of a line pipe steel with discontinuous yielding. Mater. Sci. Eng., A 301, 147–153 (2001).

    Article  Google Scholar 

  30. 30.

    W.B. Li, J.L. Henshall, R.M. Hooper, and K.E. Easterling: The mechanisms of indentation creep. Acta Metall. Mater. 39, 3099–3110 (1991).

    CAS  Article  Google Scholar 

  31. 31.

    T.H. Alden: Theory of mobile dislocation density: Application to the deformation of 304 stainless steel. Metall. Trans. A 18, 51–62 (1987).

    Article  Google Scholar 

  32. 32.

    S.H. Wang, Y.G. Zhang, and W.X. Chen: Room temperature creep and strain-rate-dependent stress-strain behavior of pipeline steels. J. Mater. Sci. 36, 1931–1938 (2001).

    CAS  Article  Google Scholar 

  33. 33.

    K. Mylvaganam, L.C. Zhang, and Y. Zhang: Stress-induced phase and structural changes in KDP crystals. Comput. Mater. Sci. 109, 359–366 (2015).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. Yu Wang at the University of New South Wales for his invaluable comments and suggestions. This work was financially sponsored by NSFC (Grant No. 51375122).

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. C. Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, L.C., Liu, M. et al. Revealing the mechanical properties of potassium dihydrogen phosphate crystals by nanoindentation. Journal of Materials Research 31, 1056–1064 (2016). https://doi.org/10.1557/jmr.2016.91

Download citation