Large area chemical vapor deposition growth of monolayer MoSe2 and its controlled sulfurization to MoS2

Abstract

Layered transition metal dichalcogenides which are part of the two dimensional materials family are experiencing rapidly growing interest owing to their diverse physical and optoelectronic properties. Large area controllable synthesis of these materials is required for transition from lab scale research to practical applications. In this work, we present a single step chemical vapor deposition process for large area monolayer growth of molybdenum selenide (MoSe2). We also demonstrate controllable thermal conversion from molybdenum selenide to molybdenum sulfide.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

References

  1. 1.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    M. Chhowalla, H.S. Shin, G. Eda, L-J. Li, K.P. Loh, and H. Zhang: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  3. 3.

    Q.H. Wang, K. Kalantar-zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    S. Das, H.Y. Chen, A.V. Penumatcha, and J. Appenzeller: High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    D. Akinwande, N. Petrone, and J. Hone: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5737 (2015).

    Google Scholar 

  7. 7.

    S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J.S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R.M. Wallace, and A. Javey: MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    D. Kiriya, M. Tosun, P. Zhao, J.S. Kang, and A. Javey: Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 136, 7853–7856 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    H. Chang, S. Yang, J. Lee, L. Tao, W. Hwang, D. Jena, N. Lu, and D. Akinwande: High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power. ACS Nano 7, 5446–5452 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    A. Sanne, R. Ghosh, A. Rai, H.C.P. Movva, A. Sharma, R. Rao, L. Mathew, and S.K. Banerjee: Top-gated chemical vapor deposited MoS2 field-effect transistors on Si3N4 substrates. Appl. Phys. Lett. 106, 062101 (2015).

    Article  Google Scholar 

  11. 11.

    A. Sanne, R. Ghosh, A. Rai, M. Nagavalli Yogeesh, S.H. Shin, A. Sharma, K. Jarvis, L. Mathew, R. Rao, D. Akinwande, and S.K. Banerjee: Radio frequency transistors and circuits based on CVD MoS2. Nano Lett. 15, 5039–5045 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Y. Liu, R. Ghosh, D. Wu, A. Ismach, R. Ruoff, and K. Lai: Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique. Nano Lett. 14, 4682–4686 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    A. Roy, S. Guchhait, S. Sonde, R. Dey, T. Pramanik, A. Rai, C.P. Hema, L. Colombo, and S.K. Banerjee: Two-dimensional weak anti-localization in Bi2Te3 thin film grown on Si(111)-(7 × 7) surface by molecular beam epitaxy. Appl. Phys. Lett. 102, 163118 (2013).

    Article  Google Scholar 

  14. 14.

    H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, and D. Baillargeat: From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, and J. Wu: Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576–5580 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, and J. Shan: Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2012).

    Article  Google Scholar 

  17. 17.

    S-H. Su, W-T. Hsu, C-L. Hsu, C-H. Chen, M-H. Chiu, Y-C. Lin, W-H. Chang, K. Suenaga, J-H. He, and L-J. Li: Controllable synthesis of band-gap-tunable and monolayer transition-metal dichalcogenide alloys. Front. Energy Res. 2, 27 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the Office of Naval Research (ONR), and the Army Research Office (ARO). M.V. and S.K.B. acknowledge support from the NASCENT NSF Engineering Research Center (ERC). The authors would also like to thank Dr. Di Wu and Prof. Keji Lai (Department of Physics, UT Austin).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rudresh Ghosh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, R., Kim, JS., Roy, A. et al. Large area chemical vapor deposition growth of monolayer MoSe2 and its controlled sulfurization to MoS2. Journal of Materials Research 31, 917–922 (2016). https://doi.org/10.1557/jmr.2016.7

Download citation