Hydrogen generation from pure water using Al-Sn powders consolidated through high-pressure torsion


Al-Sn binary alloys are fabricated by powder consolidation using high-pressure torsion (HPT). The HPT-processed samples are immersed in pure water and hydrogen generation behavior is investigated with respect to the imposed strain through the HPT processing at a selected temperature in the range of 297–333 K. Microstructures of HPT-processed alloys are analyzed by x-ray diffraction, transmission electron microscopy (TEM), electron probe microanalysis (EPMA) and electron back scattered diffraction (EBSD) analysis. Results show that it is important to add more than 60 wt% of Sn to activate hydrogen generation from the Al-Sn alloys in pure water. TEM and EBSD images reveal significant grain refinement while EPMA results exhibit homogenous distribution of elements achieved by HPT. The grain refinement and distribution of elements attained by HPT processing influence greatly the hydrogen generation rate and yield of the alloys. An Al-80 wt% Sn alloy with an average grain size of ∼270 nm exhibits the highest hydrogen yield and generation rate in pure water at 333 K.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9


  1. 1.

    Q. Li and N.J. Bjerrum: Aluminum as anode for energy storage and conversion: A review. J. Power Sources 110 (1), 1 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    M. Nestoridi, D. Pletcher, R.J.K. Wood, S. Wang, R.L. Jones, K.R. Stokes, and I. Wilcock: The study of aluminium anodes for high power density Al/air batteries with brine electrolytes. J. Power Sources 178 (1), 445 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    G.T. Qi, Y.B. Qiu, Y.N. Zhao, and Q.Z. Cai: The attack initiation of Al–Zn–In–Sn anode by the segregation concentrating Zn, Sn and In. Mater. Corros. 60 (3), 206 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    J.B. Bessone, D.O. Flamini, and S.B. Saidman: Comprehensive model for the activation mechanism of Al–Zn alloys produced by indium. Corros. Sci. 47 (1), 95 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    H.Z. Wang, D.Y.C. Leung, M.K.H. Leung, and M. Ni: A review on hydrogen production using aluminum and aluminum alloys. Renewable Sustainable Energy Rev. 13 (4), 845 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    S. Elitzur, V. Rosenband, and A. Gany: Study of hydrogen production and storage based on aluminum–water reaction. Int. J. Hydrogen Energy 39 (12), 6328 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    X. Huang, T. Gao, X. Pan, D. Wei, C. Lv, L. Qin, and Y. Huang: A review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications. J. Power Sources 229, 133 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    X. Chen, L. Liu, Y.Y. Peter, and S.S. Mao: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331 (6018), 746 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    X. Chen, S. Shen, L. Guo, and S.S. Mao: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110 (11), 6503 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    X. Chen, C. Li, M. Grätzel, R. Kostecki, and S.S. Mao: Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41 (23), 7909 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3 (6), 2485 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    J. Yuan, J. Wen, Y. Zhong, X. Li, Y. Fang, S. Zhang, and W. Liu: Enhanced photocatalytic H2 evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/gC3N4 heterojunctions. J. Mater. Chem. A 3 (35), 18244 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S.Z. Qiao: Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43 (22), 7787 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    O. Khaselev and J.A. Turner: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280 (5362), 425 (1998).

    CAS  Article  Google Scholar 

  15. 15.

    S.Y. Reece, J.A. Hamel, K. Sung, T.D. Jarvi, A.J. Esswein, J.J. Pijpers, and D.G. Nocera: Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334 (6056), 645 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Zheng, Y. Jiao, L.H. Li, T. Xing, Y. Chen, M. Jaroniec, and S.Z. Qiao: Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8 (5), 5290 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, and S.Z. Qiao: Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 1 (2014).

    Google Scholar 

  18. 18.

    S. Chen, J. Duan, Y. Tang, B. Jin, and S.Z. Qiao: Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst. Nano Energy 11, 11 (2015).

    Article  Google Scholar 

  19. 19.

    J. Duan, S. Chen, M. Jaroniec, and S.Z. Qiao: Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9 (1), 931 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Zheng, Y. Jiao, M. Jaroniec, and S.Z. Qiao: Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem., Int. Ed. 54 (1), 52 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    M.A. Rosen: Advances in hydrogen production by thermochemical water decomposition: a review. Energy 35 (2), 1068 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    H.L. Chin, Z.S. Chen, and C.P. Chou: Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol. Prog. 19 (2), 383 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    H. Wang, D.Y.C. Leung, and M.K.H. Leung: Energy analysis of hydrogen and electricity production from aluminum-based processes. Appl. Energy 90 (1), 100 (2012).

    Article  Google Scholar 

  24. 24.

    M. Fan, F. Xu, and L. Sun: Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water. Int. J. Hydrogen Energy 32 (14), 2809 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    J.T. Ziebarth, J.M. Woodall, R.A. Kramer, and G. Choi: Liquid phase-enabled reaction of Al–Ga and Al–Ga–In–Sn alloys with water. Int. J. Hydrogen Energy 36 (9), 5271 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    H. Wang, Y. Chang, S. Dong, Z. Lei, Q. Zhu, P. Luo, and Z. Xie: Investigation on hydrogen production using multicomponent aluminum alloys at mild conditions and its mechanism. Int. J. Hydrogen Energy 38 (3), 1236 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    A.V. Ilyukhina, A.S. Ilyukhin, and E.I. Shkolnikov: Hydrogen generation from water by means of activated aluminum. Int. J. Hydrogen Energy 37 (21), 16382 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    K. Mahmoodi and B. Alinejad: Enhancement of hydrogen generation rate in reaction of aluminum with water. Int. J. Hydrogen Energy 35 (11), 5227 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45 (2), 103 (2000).

    CAS  Article  Google Scholar 

  30. 30.

    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58 (4), 33 (2006).

    Article  Google Scholar 

  31. 31.

    L. Ouyang, Y. Xu, H. Dong, L. Sun, and M. Zhu: Production of hydrogen via hydrolysis of hydrides in Mg–La system. Int. J. Hydrogen Energy 34 (24), 9671 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    M-S. Zou, R-J. Yang, X-Y. Guo, H-T. Huang, J-Y. He, and P. Zhang: The preparation of Mg-based hydro-reactive materials and their reactive properties in seawater. Int. J. Hydrogen Energy 36 (11), 6478 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    M-Q. Fan, F. Xu, L-X. Sun, J-N. Zhao, T. Jiang, and W-X. Li: Hydrolysis of ball milling Al–Bi–hydride and Al–Bi–salt mixture for hydrogen generation. J. Alloys Compd. 460 (1–2), 125 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    H. Hu, M. Qiao, Y. Pei, K. Fan, H. Li, B. Zong, and X. Zhang: Kinetics of hydrogen evolution in alkali leaching of rapidly quenched Ni–Al alloy. Appl. Catal., A 252 (1), 173 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    M.Q. Fan, L.X. Sun, and F. Xu: Hydrogen production for micro-fuel-cell from activated Al–Sn–Zn–X (X: hydride or halide) mixture in water. Renewable Energy 36 (2), 519 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    X. Hu, G. Zhu, Y. Zhang, Y. Wang, M. Gu, S. Yang, P. Song, X. Li, H. Fang, G. Jiang, and Z. Wang: Hydrogen generation through rolling using Al–Sn alloy. Int. J. Hydrogen Energy 37 (15), 11012 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    Y. Ito and Z. Horita: Microstructural evolution in pure aluminum processed by high-pressure torsion. Mater. Sci. Eng., A 503 (1–2), 32 (2009).

    Article  Google Scholar 

  38. 38.

    K. Edalati and Z. Horita: Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion. Mater. Sci. Eng., A 528 (25–26), 7514 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    A. Alhamidi, K. Edalati, Z. Horita, S. Hirosawa, K. Matsuda, and D. Terada: Softening by severe plastic deformation and hardening by annealing of aluminum–zinc alloy: Significance of elemental and spinodal decompositions. Mater. Sci. Eng., A 610, 17 (2014).

    CAS  Article  Google Scholar 

Download references


We are grateful to Prof. Hiroaki Nakano of Department of Materials Science and Engineering, Kyushu University for useful discussion. One of the authors (Fan Zhang) would like to thank the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan for a Ph.D scholarship. This work was supported in part by the Light Metals Educational Foundation of Japan, in part by the Grant-in-Aids from the MEXT, Japan (Nos. 22102004, 26220909, and 15K14183). The HPT process was carried out in the International Research Center on Giant Straining for Advanced Materials (IRC-GSAM) at Kyushu University.

Author information



Corresponding author

Correspondence to Fan Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Yonemoto, R., Arita, M. et al. Hydrogen generation from pure water using Al-Sn powders consolidated through high-pressure torsion. Journal of Materials Research 31, 775–782 (2016). https://doi.org/10.1557/jmr.2016.74

Download citation