Synergistic reinforcement of carbon nanotubes and silicon carbide for toughening tantalum carbide based ultrahigh temperature ceramic


Tantalum carbide (TaC) is an ultrahigh temperature ceramic, where low damage tolerance limits its potential application in propulsion sector. In this respect, current work focuses on enhancing the toughness of TaC based composites via synergistic reinforcement of SiC and carbon nanotubes (CNTs). Spark plasma sintering of TaC, reinforced with 15 vol% SiC and 15 vol% CNT (processed at 1850 °C, 40 MPa, 5 min), has shown enhanced densification from ∼93% (for TaC) to ∼98%. Potential damage of the tubular CNTs to flaky graphite was revealed using transmission electron microscopy, and was supplemented via Raman spectroscopy. SiC addition has enhanced the hardness to ∼19.5 GPa while a decreases to 12.6 GPa was observed with CNT addition when compared to the hardness of TaC (∼15.5 GPa). The increase in the indentation fracture toughness (from 3.1 MPa m1/2 for TaC to 11.4 MPa m1/2) and fracture strength (from ∼23 MPa for TaC to ∼183 MPa) via synergetic reinforcement of SiC and CNT is mainly attributed to energy dissipating mechanisms such as crack branching, CNT bridging, and crack-deflection. In addition, the reduction of interfacial residual tensile-stresses with SiC- and CNT-reinforcement, resulting an overall increase in the fracture energy and toughening, is also established.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6


  1. 1.

    E.K. Storms ed.: Refractory Materials: The Refractory Carbides, A Series of Monographs (Academic Press Inc., New York, 1967).

    Google Scholar 

  2. 2.

    C. Kim, G. Gottstein, and D.S. Grummon: Plastic flow and dislocation structures in tantalum carbide: Deformation at low and intermediate homologous temperatures. Acta Metall. Mater. 42 (7), 2291 (1994).

    CAS  Article  Google Scholar 

  3. 3.

    G.V. Samonov and R.Y. Petrikina: Sintering of metals, carbides and oxides by Ho pressing. Phys. Sintering 2, 1 (1970).

    Google Scholar 

  4. 4.

    J.X. Liu, Y.M. Kan, and G.J. Zhang: Pressureless sintering of tantalum carbide ceramics without additives. J. Am. Ceram. Soc. 93 (2), 370 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    E. Khaleghi, Y.S. Lin, M.A. Meyers, and E.A. Olevsky: Spark plasma sintering of tantalum carbide. Scr. Mater. 63 (6), 577 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    W.C. Ruoff and A.L. Yohe: Ultrafine-grain tantalum carbide by high pressure hot pressing. J. Am. Ceram. Soc. 12 (57), 647 (1978).

    Google Scholar 

  7. 7.

    X. Zhang, G.E. Hilmas, W.G. Fahrenholtz, and D.M. Deason: Hot pressing of tantalum carbide with and without sintering additives. J. Am. Ceram. Soc. 90 (2), 393 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    F. Monteverde: Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering. J. Alloys Compd. 428 (1–2), 197 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    X. Zhang, L. Xu, S. Du, C. Liu, J. Han, and W. Han: Spark plasma sintering and hot pressing of ZrB2–SiCW ultra-high temperature ceramics. J. Alloys Compd. 466 (1–2), 241 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    I. Bajpai, K. Balani, and B. Basu: Spark plasma sintered HA-Fe3O4-based multifunctional magnetic biocomposites. J. Am. Ceram. Soc. 96 (7), 2100 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    A.K. Dubey, A. Ea, K. Balani, and B. Basu: Multifunctional properties of multistage spark plasma sintered HA–BaTiO3-based piezobiocomposites for bone replacement applications. J. Am. Ceram. Soc. 96 (12), 3753 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    K. Hackett, S. Verhoef, R.A. Cutler, and D.K. Shetty: Phase constitution and mechanical properties of carbides in the Ta-C system. J. Am. Ceram. Soc. 92 (10), 2404 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    L. Silvestroni, A. Bellosi, C. Melandri, D. Sciti, J.X. Liu, and G.J. Zhang: Microstructure and properties of HfC and TaC-based ceramics obtained by ultrafine powder. J. Eur. Ceram. Soc. 31 (4), 619 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    X. Zhang, G.E. Hilmas, and W.G. Fahrenholtz: Densification, mechanical properties, and oxidation resistance of TaC–TaB2 ceramics. J. Am. Ceram. Soc. 91 (12), 4129 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    S.R. Bakshi, V. Musaramthota, D. Lahiri, V. Singh, S. Seal, and A. Agarwal: Spark plasma sintered tantalum carbide: Effect of pressure and nano-boron carbide addition on microstructure and mechanical properties. Mater. Sci. Eng., A 528 (3), 1287 (2011).

    Article  CAS  Google Scholar 

  16. 16.

    L. Silvestroni and D. Sciti: Effects of MoS additions on the properties of Hf- and Zr-composites produced by pressureless sintering. Scr. Mater. 57 (2), 165 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, and D.T. Ellerby: High strength ZrB2-based ceramics. J. Am. Ceram. Soc. 87 (6), 1170 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    S. Zhu, W.G. Fahrenholtz, and G.E. Hilmas: Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics. J. Am. Ceram. Soc. 27, 2077 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    L. Liu, F. Ye, Z. Zhang, and Y. Zhou: Microstructure and mechanical properties of the spark plasma sintered TaC/SiC composites. Mater. Sci. Eng., A 529 (25), 479 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    K. Balani, G. Gonzalez, A. Agarwal, R. Hickman, J.S. O’Dell, and S. Seal: Synthesis, microstructural characterization and mechanical property evaluation of vacuum plasma sprayed tantalum carbide. J. Am. Ceram. Soc. 89 (4), 1419 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    S.R. Srinivasa, V. Musaramthota, D.A. Virzi, A.K. Keshri, D. Lahiri, V. Singh, S. Seal, and A. Agarwal: Spark plasma sintered tantalum carbide-carbon nanotube composite: effect of pressure, carbon nanotube length and dispersion technique on microstructure and mechanical properties. Mater. Sci. Eng., A 528 (6), 2538 (2011).

    Article  CAS  Google Scholar 

  22. 22.

    K. Balani, S.R. Bakshi, T. Mungole, and A. Agarwal: Ab-initio molecular modeling of interfaces in tantalum-carbon system. J. Appl. Phys. 111, 063521 (2012).

    Article  CAS  Google Scholar 

  23. 23.

    L. Liu, H. Liu, F. Ye, Z. Zhang, and Y. Zhou: Microstructure and mechanical properties of the spark plasma sintered Ta2C ceramics. Ceram. Int. 38 (6), 4707 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    A. Nieto, D. Lahiri, and A. Agarwal: Graphene nanoplatelets reinforced tantalum carbide consolidated by spark plasma sintering. Mater. Sci. Eng., A 582, 338 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    S.R. Bakshi, K. Balani, and A. Agarwal: Thermal conductivity of plasma-sprayed aluminum oxide—multiwalled carbon nanotube composites. J. Am. Ceram. Soc. 91 (3), 942 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    Y. Chen, K. Balani, and A. Agarwal: Do thermal residual stresses contribute to the improved fracture toughness of carbon nanotube/alumina nanocomposites?Scr. Mater. 66 (6), 347 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    G.R. Anstis, P. Chantiklul, B.R. Lawn, and D.B. Marshall: A critical evaluation of indentation techniques for measuring fracture toughness: I. Dircet crack measurements. J. Am. Ceram. Soc. 64 (9), 533 (1981).

    CAS  Article  Google Scholar 

  28. 28.

    H. Awaji and Y. Sakaida: V-notch technique for single-edge notched beam and chevron notch methods. J. Am. Ceram. Soc. 73 (11), 3522 (1990).

    CAS  Article  Google Scholar 

  29. 29.

    X. Wang, N.P. Padture, and H. Tanaka: Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat. Mater. 3, 539 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    P. Chantikul, G.R. Anstis, B.R. Lawn, and D.B. Marshall: A critical evaluation of indentation techniques for measuring fracture toughness: II. Strength method. J. Am. Ceram. Soc. 64 (9), 539 (1981).

    CAS  Article  Google Scholar 

  31. 31.

    M.H.E-S.A. Albedah and F. Benyahia: Diametral compression test: Validation using finite element analysis. Int. J. Adv. Manuf. Technol. 57 (5–8), 501 (2011).

    Google Scholar 

  32. 32.

    A.T. Procopio, A. Zavaliangos, and J.C. Cunningham: Analysis of the diametrical compression test and the applicability to plastically deforming materials. J. Mater. Sci. 38 (17), 3629 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    G.B. Yadhukulakrishnan, A. Rahman, S. Karumuri, M.M. Stackpoole, A.K. Kalkan, R.P. Singh, and S.P. Harimkar: Spark plasma sintering of silicon carbide and multi-walled carbon nanotube reinforced zirconium diboride ceramic composite. Mater. Sci. Eng., A 552, 125 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentaion experiments. J. Mater. Res. 7 (6), 1564 (1992).

    CAS  Article  Google Scholar 

  35. 35.

    B.R. Kim, K.D. Woo, J.M. Doh, J.K. Yoon, and I.J. Shon: Mechanical properties and rapid consolidation of binderless nanostructured tantalum carbide. Ceram. Int. 35 (8), 3395 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    Y. Chen, K. Balani, and A. Agarwal: Analytical model to evaluate interface characteristics of carbon nanotube reinforced aluminum oxide nanocomposites. Appl. Phys. Lett. 92 (1), 011916 (2008).

    Article  CAS  Google Scholar 

  37. 37.

    J.E. Tercero, S. Namin, D. Lahiri, K. Balani, N. Tsoukias, and A. Agarwal: Effect of carbon nanotube and aluminum oxide addition on plasma-sprayed hydroxyapatite coating’s mechanical properties and biocompatibility. Mater. Sci. Eng., C 29 (7), 2195 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    A.K. Keshri, K. Balani, S.R. Bakshi, V. Singh, T. Laha, S. Seal, and A. Agarwal: Structural transformations in carbon nanotubes during thermal spray processing. Surf. Coat. Technol. 203 (16), 2193 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    T. Zhang, L. Kumari, G.H. Du, W.Z. Li, Q.W. Wang, K. Balani, and A. Agarwal: Mechanical properties of carbon nanotube–alumina nanocomposites synthesized by chemical vapor deposition and spark plasma sintering. Composites, Part A 40 (1), 86 (2009).

    Article  CAS  Google Scholar 

  40. 40.

    V. Singh, R. Diaz, K. Balani, A. Agarwal, and S. Seal: Chromium carbide–CNT nanocomposites with enhanced mechanical properties. Acta Mater. 57 (2), 335 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    C. Lee, X. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321 (5887), 385 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, and H.D. Espinosa: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3 (10), 626 (2008).

    CAS  Article  Google Scholar 

  43. 43.

    B.I. Yakobson, C.J. Brabec, and J. Bernholc: Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76 (14), 2511 (1996).

    CAS  Article  Google Scholar 

  44. 44.

    S. Zhang, R. Khare, T. Belytschko, K.J. Hsia, S.L. Mielke, and G.C. Schatz: Transition states and minimum energy pathways for the collapse of carbon nanotubes. Phys. Rev. B 73 (075423–075429), 075423 (2006).

    Article  CAS  Google Scholar 

  45. 45.

    L. Muthaswamy, Y. Zheng, R. Vajtai, G. Shehkawat, P. Ajayan, and R.E. Geer: Variation of radial elasticity in multiwalled carbon nanotubes. Nano Lett. 7 (12), 3891 (2007).

    Article  CAS  Google Scholar 

  46. 46.

    Q. Huang, D. Jiang, I.A. Ovid’ko, and A. Mukherjee: High-current-induced damage on carbon nanotubes: The case during spark plasma sintering. Scr. Mater. 63 (12), 1181 (2010).

    CAS  Article  Google Scholar 

  47. 47.

    K. Yang, J. He, Z. Su, J.B. Reppert, M.J. Skove, T.M. Tritt, and A.M. Rao: Inter-tube bonding, graphene formation and anisotropic transport properties in spark plasma sintered multi-wall carbon nanotube arrays. Carbon 48 (3), 756 (2010).

    CAS  Article  Google Scholar 

  48. 48.

    D. Ghosh, G. Subhash, and N. Orlovskaya: Measurement of scratch-induced residual stress within SiC grains in ZrB2–SiC composite using micro-Raman spectroscopy. Acta Mater. 56 (18), 5345 (2008).

    CAS  Article  Google Scholar 

  49. 49.

    J. Watts, G. Hilmas, W.G. Fahrenholtz, D. Brown, and B. Clausen: Measurement of thermal residual stresses in ZrB2–SiC composites. J. Eur. Ceram. Soc. 31 (9), 1811 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    L. Silvestroni, L. Pienti, S. Guicciardi, and D. Sciti: Strength and toughness: The challenging case of TaC-based composites. Composites, Part B 72, 10 (2015).

    CAS  Article  Google Scholar 

  51. 51.

    M. Taya, S. Hayashi, A.S. Kobayashi, and H.S. Yoon: Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J. Am. Ceram. Soc. 73 (5), 1382 (1990).

    CAS  Article  Google Scholar 

Download references


Authors acknowledge the financial support received from IITK-Space Technology Cell and ISRO (Indian Space Research Organization), Trivandrum, India. Authors also acknowledge Electron Microscope Facility, MSE Department, IIT Kanpur, and instrumented indentation facility and mechanical testing in Advanced Center for Materials Science, IIT Kanpur. K.B. acknowledges P.K. Kelkar Fellowship, IIT Kanpur.

Author information



Corresponding author

Correspondence to Kantesh Balani.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nisar, A., S, A. & Balani, K. Synergistic reinforcement of carbon nanotubes and silicon carbide for toughening tantalum carbide based ultrahigh temperature ceramic. Journal of Materials Research 31, 682–692 (2016).

Download citation