Microstructure and electrochemical behavior of stainless steel weld overlay cladding exposed to post weld heat treatment

Abstract

Microstructure and electrochemical behavior of stainless steel weld overlay cladding exposed to post weld heat treatment (PWHT) were investigated, wherein pitting and intergranular corrosion behaviors of the cladding material were evaluated by potentiodynamic polarization and double loop electrochemical potentiokinetic reactivation methods. The results indicated that inclusions, multiple element (Mn, Si, and Al) oxides distributed randomly in the cladding material with a size less than 1 µm. PWHT contributed to carbides precipitation along the δ/γ phase interface and the formation of Cr-depleted zone in the austenite phase. Inclusions acted as the pitting sites in the sample as welded. PWHT reduced the pitting potential and contributed to the formation of larger and deeper pits, which nucleated around the δ/γ phase interface primarily. Existence of carbides and Cr-depleted zone dominated the loss of intergranular corrosion resistance after PWHT.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

References

  1. 1.

    S.L. Li, Y.L. Wang, H.L. Zhang, S.X. Li, K. Zhang, F. Xue, and X.T. Wang: Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging. J. Nucl. Mater. 433 (1–3), 41 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    R. Unnikrishnan, K.S.N.S. Idury, T.P. Ismail, A. Bhadauria, S.K. Shekhawat, R.K. Khatirkar, and S.G. Sapate: Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments. Mater. Charact. 93 (7), 10 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    Y. Cui and C.D. Lundin: Austenite-preferential corrosion attack in 316 austenitic stainless steel weld metals. Mater. Des. 28 (1), 324 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    R. Badji, B. Bacroix, and M. Bouabdallah: Texture, microstructure and anisotropic properties in annealed 2205 duplex stainless steel welds. Mater. Charact. 62 (9), 833 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    G.F. Li, E.A. Charles, and J. Congleton: Effect of post weld heat treatment on stress corrosion cracking of a low alloy steel to stainless steel transition weld. Corros. Sci. 43 (10), 1963 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    G.F. Li and J. Congleton: Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292 °C. Corros. Sci. 42 (6), 1005 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    T. Takeuchi, Y. Takuyo, M. Tomoki, A. Koji, and F. Koji: Corrosion behavior of stainless steels in simulated PWR primary water-effect of chromium content in alloys and dissolved hydrogen. J. Nucl. Sci. Technol. 45 (10), 975 (2008).

    Article  Google Scholar 

  8. 8.

    A. Abbasi Aghuy, M. Zakeri, M.H. Moayed, and M. Mazinani: Effect of grain size on pitting corrosion of 304L austenite stainless steel. Corros. Sci. 94, 368 (2015).

    Article  Google Scholar 

  9. 9.

    H-Y. Ha, M-H. Jang, and T-H. Lee: Influence of Mn in solid solution on pitting corrosion behavior of Fe–23 wt% Cr-based alloys. Corros. Sci. 191 (10), 864 (2016).

    CAS  Google Scholar 

  10. 10.

    Y.H. Yang, B. Yan, J. Wang, and J.L. Li: The influence of solution treatment temperature on microstructure and corrosion behavior of high temperature ageing in 25% Cr duplex stainless steel. J. Alloys Compd. 509 (36), 8870 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    J.L. Cardoso and R.C.A. Vieira: Pitting corrosion resistance of austenitic and superaustenitic stainless steels in aqueous medium of NaCl and H2SO4. J. Mater. Res. 31 (12), 1755 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and E. Matykina: Pitting corrosion behaviour of austenitic stainless steels-combining effects of Mn and Mo additions. Corros. Sci. 50 (6), 1796 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    R. Ke and R. Alkire: Initiation of corrosion pits at inclusions on 304 stainless steel. J. Electrochem. Soc. 139 (6), 1573 (1992).

    CAS  Article  Google Scholar 

  14. 14.

    A. Otake, I. Muto, A. Chiba, Y. Sugawara, and N. Hara: Microelectrochemical investigation of pit initiation site on austenitic cast stainless steel. ECS Trans. 69 (28), 1 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    I. Lo and W.T. Tsai: Effect of heat treatment on the precipitation and pitting corrosion behavior of 347 SS weld overlay. Mater. Sci. Eng., A 355 (1), 137 (2003).

    Article  Google Scholar 

  16. 16.

    Z.Y. Zhu, C.Y. Deng, Y. Wang, Z.W. Yang, J.K. Ding, and D.P. Wang: Effect of post weld heat treatment on the microstructure and corrosion behavior of AA2219 aluminum alloy joints welded by variable polarity tungsten inert gas welding. Mater. Des. 65, 1075 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Yang, Z. Wang, H. Tan, J.F. Hong, Y.M. Jiang, L.Z. Jiang, and J. Lin: Effect of a brief post-weld heat treatment on the microstructure evolution and pitting corrosion of laser beam welded UNS S31803 duplex stainless steel. Corros. Sci. 65 (9), 472 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    K. Guan, X. Xu, H. Xu, and Z. Wang: Effect of aging at 700 °C on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds. Nucl. Eng. Des. 235 (23), 2485 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    G. Bai, S. Lu, D. Li, and Y. Li: Intergranular corrosion behavior associated with delta-ferrite transformation of Ti-modified Super 304H austenitic stainless steel. Corros. Sci. 90, 347 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    V.S. Moura, L.D. Lima, J.M. Pardal, and S.S.M. Tavares: Influence of microstructure on the corrosion resistance of the duplex stainless steel UNS S31803. Mater. Charact. 59 (8), 1127 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    J.H. Liu, Y. Wen, X.M. Zhang, S.M. Huo, and B. Gong: Corrosion properties of sealing surface material for RPV under abnormal working conditions. Nucl. Power Eng. 33 (1), 83 (2012).

    Google Scholar 

  22. 22.

    Z. Fang, Y.L. Zhang, Y.S. Wu, D.B. Sun, and J.Q. Li: Detecting susceptible to intergranular corrosion of 308L stainless steel by EPR method. Corros. Sci. Prot. Technol. 8, 87 (1996).

    CAS  Google Scholar 

  23. 23.

    Y.M. Tang, Y. Zuo, J.N. Wang, X.H. Zhao, B. Niu, and B. Lin: The metastable pitting potential and its relation to the pitting potential for four materials in chloride solutions. Corros. Sci. 80 (3), 111 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    X. Di, S. Ji, F. Cheng, and J. Cao: Effect of cooling rate on microstructure, inclusions and mechanical properties of weld metal in simulated local dry underwater welding. Mater. Des. 88, 505 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    H.Y. Ha, M.H. Jang, and T.H. Lee: Influences of Mn in solid solution on the pitting corrosion behaviour of Fe-23 wt% Cr-based alloys. Electrochim. Acta 191, 864 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Z.Q. Sheng: The intercrystalline corrosion in the stainless bead welding layer. Nucl. Power Eng. 11, 48 (1990).

    Google Scholar 

  27. 27.

    D. Nakhaie and M.H. Moayed: Pitting corrosion of cold rolled solution treated 17-4 PH stainless steel. Corros. Sci. 80 (3), 290 (2014).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the financial support for the present work from National Energy Application Technology Research and Engineering Demonstration Project (NY20111201-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. H. Lu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, X.Y., Zhu, P., Liu, T.G. et al. Microstructure and electrochemical behavior of stainless steel weld overlay cladding exposed to post weld heat treatment. Journal of Materials Research 32, 852–862 (2017). https://doi.org/10.1557/jmr.2016.526

Download citation