Multiscale and multicycle instrumented indentation to determine mechanical properties: Application to the BK7 crown borosilicate

Abstract

In this work, nano, micro, and macro-indentation tests under standard or multicycle loading conditions were performed for studying the mechanical behavior of a crown borosilicate glass sample with the objective to study the scale effect in indentation and the influence of cracks formation on the assessment of mechanical properties. When no cracks were initiated during the indenter penetration, especially for low indentation loads, the mechanical properties were deduced by applying different methodologies, (i) Standard (or monocyclic) loading, (ii) Continuous Stiffness Measurement mode, (iii) Constant and progressive multicycle loading, and (iv) Dynamic hardness computation. It has been found independently of the loading conditions, Martens hardness and elastic modulus are approximately 3.3 and 70 GPa, respectively. However, when cracking and chipping are produced during the indentation test, two damage parameters related to hardness and elastic modulus can be used for representing the decrease of the mechanical properties as a function of the relative penetration depth.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

References

  1. 1.

    B. Balland: Optique géométrique: Imagerie et instruments (Geometrical Optics: Imaging and Instruments) (PPUR Presses Polytechniques, Lausanne, 2007); p. 860.

    Google Scholar 

  2. 2.

    J. Phalippou: Verres: Propriétés et applications (Glasses: Properties and Applications), Techniques de l’ingénieur AF3601, July 10, 2001.

  3. 3.

    G.F. VanderVoort: Metallography: Principles and Practice (McGraw-Hill, New York, 1984); p. 752.

    Google Scholar 

  4. 4.

    W.I. Rupp: Loose abrasive grinding of optical surface. Appl. Opt. 11(12), 2797–2810 (1972).

    CAS  Article  Google Scholar 

  5. 5.

    A.A. Tesar and B.A. Fuchs: Removal rates of fused silica with cerium oxide and pitch polishing. Proc. Soc. Photo-Opt. Instr. Eng., 1531, 80–90 (1992).

    CAS  Google Scholar 

  6. 6.

    H.H. Karow: Fabrication Methods for Precision Optics (Wiley-Interscience, Hoboken, 2004); p. 768.

    Google Scholar 

  7. 7.

    E. Brinksmeier, O. Riemer, and A. Gessenharter: Finishing of structured surfaces by abrasive polishing. Precis. Eng. 30(3), 325–336 (2006).

    Article  Google Scholar 

  8. 8.

    H.H. Pollicove and D.T. Moore: Optics manufacturing technology moves toward automation. Laser Focus World 27, 145–149 (1991).

    Google Scholar 

  9. 9.

    D. Golini and W. Czajkowski: Micro grinding makes ultra-smooth optics fast. Laser Focus World 28, 146–152 (1992).

    Google Scholar 

  10. 10.

    D. Golini: Influence of process parameters in deterministic micro-grinding. OSA 13, 28–31 (1994).

    Google Scholar 

  11. 11.

    H.H. Pollicove: Computer aided optics manufacturing. Opt. Photonics News 6, 15–19 (1994).

    Article  Google Scholar 

  12. 12.

    R.L. Aghan and L.E. Samuels: Mechanisms of abrasive polishing. Wear 16(4), 293–301 (1970).

    Article  Google Scholar 

  13. 13.

    Y. Xie and B. Bushan: Effects of particle size, polishing pad and contact pressure in free abrasive polishing. Wear 200(1–2), 281–295 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    J.C. Lambropoulos, S. Xu, and T. Fang: Loose abrasive lapping hardness of optical glasses and its interpretation. Appl. Opt. 36(7), 1501–1516 (1997).

    CAS  Article  Google Scholar 

  15. 15.

    T. Suratwala, P. Davis, L. Wong, P. Miller, M. Feit, J. Menapace, and R. Steele: Sub-surface mechanical damage distributions during grinding of fused silica. J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    A. Esmaeilzare, A. Rahimi, and S.M. Rezaei: Investigation of subsurface damage and surface roughness in grinding process of Zerodur glass-ceramic. App. Surf. Sci. 313, 67–75 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    C. Anunmana, K.J. Ausavice, and J.J. Mecholsky, Jr: Residual stress in glass: Indentation crack and fractography approaches. Dental Mater. 25, 1453–1458 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    R. Komanduri, D.A. Lucca, and Y. Tani: Technological advances in fine abrasive processes. Annals of the CIRP 46(2), 545–596 (1997).

    Article  Google Scholar 

  19. 19.

    S.D. Jacobs, S.R. Arrasmith, I.A. Kozhinova, L.L. Gregg, A.B. Shorey, H.J. Romanofsky, D. Golini, W.I. Kordonski, P. Dumas, and S. Hogan: MRF: Computer-controlled optics manufacturing. Am. Ceram. Soc. Bull. 78, 42–48 (1999).

    CAS  Google Scholar 

  20. 20.

    J.P. Marioge: Surface optique: Méthodes de fabrication et de contrôle, recherches (Optical Surface: Production and Control Methods, Researches) (EDP Sciences France, Les Ulis, 2000); pp. 26–33.

    Google Scholar 

  21. 21.

    W. Oliver and G. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1982).

    Article  Google Scholar 

  22. 22.

    J.M. Antunes, L.F. Menezes, and J.V. Fernandes: Three-dimensional numerical simulation of Vickers indentation tests. Int. J. Sol. Struct. 43(13–4), 784–806 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    J.T.R. Field and R.H. Telling: The Elastic Modulus and Poisson Ratio of Diamond, Research Note (Cavendish Laboratory, Cambridge, 1999).

    Google Scholar 

  24. 24.

    D. Chicot, M. Yetna N’Jock, E.S. Puchi-Cabrera, A. Iost, M.H. Staia, G. Louis, G. Bouscarrat, and R. Aumaitre: A contact area function for Berkovich nanoindentation: Application to hardness determination of a TiHfCN thin film. Thin Solid Films 558(2), 259–266 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    J.M. Antunes, A. Cavaleiro, L.F. Menezes, M.I. Simoes, and J.V. Fernandes: Ultra-microhardness testing procedure with Vickers indenter. Surf. Coat. Technol. 149, 27–35 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    L.A. Berla, A.M. Allen, S.M. Han, and W.D. Nix: A physically based model for indenter tip shape calibration for nanoindentation. J. Mater. Res. 25, 735–745 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    D. Chicot, P. De Baets, M. Staia, E. Puchi-Cabrera, G. Louis, Y.P. Delgado, and J. Vleugels: Influence of tip defect and indenter shape on the mechanical properties determination by indentation of a TiB2–60% B4C ceramic composite. Int. J. Refract. Met. Hard Mater. 38, 102–110 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    M. Troyon and L. Huang: Correction factor for contact area in nanoindentation measurements. J. Mater. Res. 20, 610–617 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    M.Y. N’jock, D. Chicot, J. Ndjaka, J. Lesage, X. Decoopman, F. Roudet, and A. Mejias: A criterion to identify sinking-in and piling-up in indentation of materials. Int. J. Mech. Sci. 90, 145–150 (2015).

    Article  Google Scholar 

  30. 30.

    D. Chicot and D. Mercier: Improvement in depth-sensing indentation to calculate the universal hardness on the entire loading curve. Mech. Mater. 40(4–5), 171–182 (2008).

    Article  Google Scholar 

  31. 31.

    J. Lemaitre and J. Dufailly: Damage measurements. Eng. Fract. Mech. 28, 643–661 (1987).

    Article  Google Scholar 

  32. 32.

    J. Malzbender, J.M.J. den Toonder, A.R. Balkenende, and G. de With: Measuring mechanical properties of coatings: A methodology applied to nano-particle fille sol-gel coatings on glass. Mater. Sci. Eng., R 36, 47–103 (2002).

    Article  Google Scholar 

  33. 33.

    R.F. Cook and G.M. Pharr: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73, 787–817 (1990).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Bentoumi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bentoumi, M., Bouzid, D., Benzaama, H. et al. Multiscale and multicycle instrumented indentation to determine mechanical properties: Application to the BK7 crown borosilicate. Journal of Materials Research 32, 1444–1455 (2017). https://doi.org/10.1557/jmr.2016.523

Download citation