In situ space-resolved X-ray diffraction and time-resolved EDXD on efficient polymer-based photovoltaic devices: Microstructural properties and aging effects

Abstract

Microstructural and morphological features of the layers forming integrated PTB7/PC71BM organic solar cells with Ca/Al cathode are studied. The effects of vacuum treatment on properties and durability were addressed using complementary approaches: time-resolved experiments revealing the structural evolution of the active layers under illumination were conducted combining the in situ energy dispersive X-ray diffraction (EDXD) technique with atomic force microscopy (AFM); space-resolved characterization of the integrated devices was possible via high resolution X-ray diffraction, using a nano-focused synchrotron radiation X-ray beam to discriminate the device components. Active layers surface morphology is stable under illumination and PC71BM structural properties remain unaltered. PTB7 undergoes crystallinity depletion, mainly at the active layer/cathode interface. This effect is actually inhibited in the device submitted to vacuum treatment, proving that this procedure induces stabilization at the cathode’s buried interface, as verified by fourier transform infrared (FTIR) spectroscopy. Importantly, the protective role of the vacuum treatment results in a significant photovoltaic durability enhancement.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    R. Betancur, P. Romero-Gomez, A. Martinez-Otero, X. Elias, M. Maymó, and J. Martorell: Transparent polymer solar cells employing a layered light-trapping architecture. Nat. Photonics 7, 995 (2012).

    Article  CAS  Google Scholar 

  2. 2.

    G. Li, R. Zhu, and Y. Yang: Polymer solar cells. Nat. Photonics 6, 153 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    N.S. Sariciftci, L. Smilowitz, A.J. Heeger, and F. Wudl: Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474 (1992).

    CAS  Article  Google Scholar 

  4. 4.

    G. Yu, J. Ga, J.C. Hummelen, F. Wudl, and A.J. Heeger: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    C.J. Brabec, N.S. Sariciftci, and J.C. Hummelen: Plastic solar cells. Adv. Funct. Mater. 11, 15 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    B.C. Thompson and J.M.J. Frechet: Polymer–fullerene composite solar cells. Angew. Chem., Int. Ed. 47, 58 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    T.L. Benanti and D. Venkataraman: Organic solar cells: An overview focusing on active layer morphology. Photosynth. Res. 87, 73 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao: Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591 (2012).

    Article  CAS  Google Scholar 

  9. 9.

    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop: Solar cell efficiency tables (version 46). Prog. Photovoltaics Res. Appl. 23, 805 (2015).

    Article  Google Scholar 

  10. 10.

    L. Ye, Y. Jing, X. Guo, H. Sun, S. Zhang, M. Zhang, L. Huo, and J. Hou: Remove the residual additives toward enhanced efficiency with higher reproducibility in polymer solar cells. J. Phys. Chem. C 117, 14920 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    N. Li and C.J. Brabec: Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%. Energy Environ. Sci. 8, 2902 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    W. Huang, E. Gann, Z-Q. Xu, L. Thomsen, Y-B. Cheng, and C.R. McNeill: A facile approach to alleviate photochemical degradation in high efficiency polymer solar cells. J. Mater. Chem. A 3, 16313 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    W. Kim, J.K. Kim, E. Kim, T.K. Ahn, D.H. Wang, and J.H. Park: Conflicted effects of a solvent additive on PTB7:PC71BM bulk heterojunction solar cells. J. Phys. Chem. C 119, 5954 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    A. Rivaton, A. Tournebize, J. Gaume, P-O. Bussieŕe, J-L. Gardette, and S. Theŕias: Photostability of organic materials used in polymer solar cells. Polym. Int. 63, 1335 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    I. Fraga Domínguez, P.D. Topham, P-O. Bussière, D. Bégué, and A. Rivaton: Unravelling the photodegradation mechanisms of a low bandgap polymer by combining experimental and modeling approaches. J. Phys. Chem. C 119, 2166 (2015).

    Article  CAS  Google Scholar 

  16. 16.

    B.J. Tremolet de Villers, K.A. O’Hara, D.P. Ostrowski, P.H. Biddle, S.E. Shaheen, M.L. Chabinyc, D.C. Olson, and N. Kopidakis: Removal of residual diiodooctane improves photostability of high-performance organic solar cell polymers. Chem. Mater. 28(3), 876 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    J. Uk Lee, J. Woong Jung, J. Woong Jo, and W. Ho Jo: Degradation and stability of polymer-based solar cells. J. Mater. Chem. 22, 24265 (2012).

    Article  CAS  Google Scholar 

  18. 18.

    S.B. Sapkota, A. Spies, B. Zimmermann, I. Dürr, and U. Würfel: Promising long-term stability of encapsulated ITO-free bulk-heterojunction organic solar cells under different aging conditions. Sol. Energy Mater. Sol. Cells 130, 144 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    P. Romero-Gomez, R. Betancur, A. Martinez-Otero, X. Elias, M. Mariano, B. Romero, B. Arredondo, R. Vergaz, and J. Martorell: Enhanced stability in semi-transparent PTB7/PC71BM photovoltaic cells. Sol. Energy Mater. Sol. Cells 137, 44 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    A.W. Hains and T.J. Marks: High-efficiency hole extraction/electron-blocking layer to replace PEDOT: PSS in bulk-heterojunction polymer solar cells. Appl. Phys. Lett. 92, 023504 (2008).

    Article  CAS  Google Scholar 

  21. 21.

    M. Kemerink, S. Timpanaro, M.M. de Kok, E.A. Meulenkamp, and F.J. Touwslager: Three-Dimensional Inhomogeneities in PEDOT: PSS films. J. Phys. Chem. B 108, 18820 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    A. Garcia, G.C. Welch, E.L. Ratcliff, D.S. Ginley, G.C. Bazan, and D.C. Olson: Improvement of interfacial contacts for new small-molecule bulk-heterojunction organic photovoltaics. Adv. Mater. 54, 5368 (2012).

    Article  CAS  Google Scholar 

  23. 23.

    M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, and D.S. Ginley: Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 143517 (2006).

    Article  CAS  Google Scholar 

  24. 24.

    R. Po, C. Carbonera, A. Bernardi, and N. Camaioni: The role of buffer layers in polymer solar cells. Energy Environ. Sci. 4(2), 285 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    M.T. Greiner, M.G. Helander, W.M. Tang, Z.B. Wang, J. Qiu, and Z.H. Lu: Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 11, 76 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    M. Ali, M. Abbas, S. Karim Shah, R. Tuerhong, A. Generosi, B. Paci, L. Hirsch, and R. Gunnella: Realization of solution processed multi-layer bulk heterojunction organic solar cells by electro-spray deposition. Org. Electron. 13, 2130 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    B. Paci, G.D. Spyropoulos, A. Generosi, D. Bailo, V. Rossi Albertini, E. Stratakis, and E. Kymakis: Evidence for improved stability of bulk heterojunction plasmonic organic photovoltaics. Adv. Funct. Mater. 21, 3578 (2011).

    Article  CAS  Google Scholar 

  28. 28.

    B. Paci, A. Generosi, D. Bailo, V. Rossi Albertini, and R. De Bettignies: Discriminating bulk, surface and interface aging effects in polymer-based active materials for efficient photovoltaic devices. Chem. Phys. Lett. 494, 69 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    B. Paci, A. Generosi, V. Rossi Albertini, and R. De Bettignies: The role of C60 barrier layer in improving the performances of efficient polymer-based photovoltaic devices: An AFM/EDXR time-resolved study. J. Phys. Chem. C 113, 19740 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    D. Chirvase, J. Parisi, J.C. Hummelen, and V. Dyakonov: Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15, 1317 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    F. Liu, W. Zhao, J.R. Tumbleston, C. Wang, Y. Gu, D. Wang, A.L. Briseno, H. Ade, and T.P. Russell: Understanding the morphology of PTB7:PCBM blends in organic photovoltaics. Adv. Energy Mater. 4, 1301377 (2014).

    Article  CAS  Google Scholar 

  32. 32.

    N. Zhou, H. Lin, S.J. Lou, X. Yu, P. Guo, E.F. Manley, S. Loser, P. Hartnett, H. Huang, M.R. Wasielewski, L.X. Chen, R.P.H. Chang, A. Facchetti, and T.J. Marks: Morphology-performance relationships in high-efficiency all-polymer solar cells. Adv. Energy Mater. 4, 1300785 (2014).

    Article  CAS  Google Scholar 

  33. 33.

    B. Paci, A. Generosi, V. Rossi Albertini, P. Perfetti, R. De Bettignies, M. Firon, J. Leroy, and C. Sentein: Controlling photoinduced degradation in plastic photovoltaic cells: A time resolved energy dispersive x-ray reflectometry study. Appl. Phys. Lett. 89, 043507 (2006).

    Article  CAS  Google Scholar 

  34. 34.

    B. Paci, A. Generosi, V. Rossi Albertini, R. De Bettignies, and C. Sentein: Time resolved morphological study of organic thin film solar cells based on calcium/aluminum cathode material. Chem. Phys. Lett. 461, 77 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    B. Paci, A. Generosi, V. Rossi Albertini, P. Perfetti, R. De Bettignies, and C. Sentein: Photo-degradation and stabilization effects in operating organic photovoltaic devices by joint photo-current and morphological monitoring. Sol. Energy Mater. Sol. Cells 92, 799 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    B. Paci, A. Generosi, V. Rossi Albertini, P. Perfetti, R. De Bettignies, M. Firon, J. Leroy, and C. Sentein: In situ energy dispersive X-ray reflectometry measurements on plastic solar cells upon working. Appl. Phys. Lett. 87, 194110 (2005).

    Article  CAS  Google Scholar 

  37. 37.

    F. Zhang, Z. Zhuo, J. Zhang, X. Wang, X. Xu, Z. Wang, Y. Xin, J. Wang, J. Wang, W. Tang, Z. Xu, and Y. Wang: Influence of PC60BM ar PC70BM as electron acceptor on the performance of polymer solar cells. Sol. Energy Mater. Sol. Cells 97, 71 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    N.C. Nicolaidis, B.S. Routley, J.L. Holdsworth, W.J. Belcher, X. Zhou, and P.C. Dastoor: Fullerene contribution to photocurrent generation in organic photovoltaic cells. J. Phys. Chem. C 115, 7801 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    B. Paci, A. Generosi, J. Wright, C. Ferrero, G. Kakavelakis, E. Stratakis, and E. Kymakis: Stability enhancement of organic photovoltaic devices utilizing partially reduced graphene oxide as the hole transport layer: Nanoscale insight into structural/interfaces properties and aging effects. RSC Adv. 5, 106930 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    B. Paci, A. Generosi, J. Wright, C. Ferrero, G. Kakavelakis, E. Stratakis, and E. Kymakis: Improving stability of organic devices: A time/space resolved structural monitoring approach applied to plasmonic photovoltaics. Sol. Energy Mater. Sol. Cells. 159, 617 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    G. Susanna, L. Salamandra, C. Ciceroni, F. Mura, T.M. Brown, A. Reale, M. Rossi, A. Di Carlo, and F. Brunetti: 8.7% power conversion efficiency polymer solar cell realized with non-chlorinated solvents. Sol. Energy Mater. Sol. Cells 134, 194 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    V. Rossi Albertini, B. Paci, and A. Generosi: The energy dispersive X-ray reflectometry as a unique laboratory tool to investigate morphological properties of layered systems and devices. J. Phys. D: Appl. Phys. 39, 461 (2006).

    Article  CAS  Google Scholar 

  43. 43.

    B. Paci, A. Generosi, R. Generosi, D. Bailo, and V. Rossi Albertini: Joint time-resolved AFM/EDXR techniques for thin films morphological in situ studies. Chem. Phys. Lett. 483, 159 (2009).

    CAS  Article  Google Scholar 

  44. 44.

    B. Paci, D. Bailo, V. Rossi Albertini, J. Wright, C. Ferrero, G.D. Spyropoulos, E. Stratakis, and E. Kymakis: Spatially-resolved in situ structural study of organic electronic devices with nanoscale resolution: The plasmonic photovoltaic case study. Adv. Mater. 25, 4760 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    A. Zampetti, A.H. Fallahpour, M. Dianetti, L. Salamandra, F. Santoni, A. Gagliardi, M. Auf der Maur, F. Brunetti, A. Reale, T.M. Brown, and A. Di Carlo: Influence of the interface material layers and semiconductor energetic disorder on the open circuit voltage in polymer solar cells. J. Polym. Sci., Part B: Polym. Phys. 53, 690 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    M. Elshobaki, J. Anderegg, and S. Chaudhary: Efficient polymer solar cells fabricated on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-etched old indium tin oxide substrates. ACS Appl. Mater. Interfaces 6, 12196 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Z. He, C. Zhong, X. Huang, W-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao: Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23, 4636 (2011).

    CAS  Article  Google Scholar 

  48. 48.

    https://www.ossila.com/products/ptb7. “Ossila, enabling innovative electronics”, PTB7, date of access 29 November 2016.

  49. 49.

    J.M. Szarko, B.S. Rolczynski, S.J. Lou, T. Xu, J. Strzalka, T.J. Marks, L. Yu, and L.X. Chen: Photovoltaic function and exciton/charge transfer dynamics in highly efficient semiconducting copolymer. Adv. Funct. Mater. 24, 10 (2014).

    CAS  Article  Google Scholar 

  50. 50.

    B.A. Collins, Z. Li, J.R. Tumbleston, E. Gann, C.R. McNeill, and H. Ade: The importance of fullerene percolation in the mixed regions of polymer–fullerene bulk heterojunction solar cells. Adv. Energy Mater. 1, 65 (2013).

    Article  CAS  Google Scholar 

  51. 51.

    W. Chen, T. Xu, F. He, W. Wang, C. Wang, J. Strzalka, Y. Liu, J. Wen, D.J. Miller, J. Chen, K. Hong, L. Yu, and S.B. Darling: Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. Nano Lett. 11, 3707 (2011).

    Article  CAS  Google Scholar 

  52. 52.

    M.R. Hammond, R.J. Kline, A.A. Herzing, L.J. Richter, D.S. Germack, H-W. Ro, C.L. Soles, D.A. Fischer, T. Xu, L. Yu, M.F. Toney, and D.M. DeLongchamp: Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells. ACS Nano 5, 8248 (2011).

    CAS  Article  Google Scholar 

  53. 53.

    J. Rivnay, S.C.B. Mannsfeld, C.E. Miller, A. Salleo, and M.F. Toney: Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488 (2012).

    CAS  Article  Google Scholar 

  54. 54.

    Q. An, F. Zhang, J. Zhang, W. Tang, Z. Denga, and B. Hu: Versatile ternary organic solar cells: A critical review. Energy Environ. Sci. 9, 281 (2016).

    Article  Google Scholar 

  55. 55.

    X. Zhang, W. Li, J.n. Yao, and C. Zhan: High-efficiency nonfullerene polymer solar cell enabling by integration of film-morphology optimization, donor selection, and interfacial engineering. ACS Appl. Mater. Interfaces 8, 15415 (2016).

    CAS  Article  Google Scholar 

  56. 56.

    Y. Zhong, M. Tuan Trinh, R. Chen, G.E. Purdum, P.P. Khlyabich, M. Sezen, S. Oh, H. Zhu, B. Fowler, B. Zhang, W. Wang, C-Y. Nam, M.Y. Sfeir, C.T. Black, M.L. Steigerwald, Y-L. Loo, F. Ng, X-Y. Zhu, and C. Nuckolls: Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells. Nat. Commun. 6, 8242 (2015).

    CAS  Article  Google Scholar 

  57. 57.

    D.M. DeLongchamp, B.M. Vogel, Y. Jung, M.C. Gurau, C.A. Richter, O.A. Kirillov, J. Obrzut, D.A. Fischer, S. Sambasivan, L.J. Richter, and E.K. Lin: Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed. Chem. Mater. 17, 5610 (2005).

    CAS  Article  Google Scholar 

  58. 58.

    L. Lu and L. Yu: Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Adv. Mater. 26, 4413 (2014).

    CAS  Article  Google Scholar 

  59. 59.

    H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, and D.M. de Leeuw: Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685 (1999).

    CAS  Article  Google Scholar 

  60. 60.

    W.J. Potscavage, Jr., A. Sharma, and B. Kippelen: Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Acc. Chem. Res. 42, 1758 (2009).

    CAS  Article  Google Scholar 

  61. 61.

    R. Steim, F.R. Kogler, and C.J. Brabec: Interface materials for organic solar cells. J. Mater. Chem. 20, 2499 (2010).

    CAS  Article  Google Scholar 

  62. 62.

    Z. Liu, J. Li, and F. Yan: Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25, 4296 (2013).

    CAS  Article  Google Scholar 

  63. 63.

    D.H. Wang, J.K. Kim, J.H. Seo, I. Park, B.H. Hong, J.H. Park, and A.J. Heeger: Transferable graphene oxide by stamping anotechnology: Electron-transport layer for efficient bluk heterojunction solar cells. Angew. Chem., Int. Ed. 52, 2874 (2013).

    CAS  Article  Google Scholar 

  64. 64.

    F.C. Krebs and K. Norrman: Analysis of the failure mechanism for a stable organic photovoltaic during 10000 h of testing. Prog. Photovoltaics Res. Appl. 15, 697 (2007).

    CAS  Article  Google Scholar 

  65. 65.

    V.A. Solé, E. Papillon, M. Cotte, Ph. Walter, and J. Susini: A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra. Spectrochim. Acta, Part B 62, 63 (2007).

    Article  CAS  Google Scholar 

  66. 66.

    K. Norrman, S.A. Gevorgyan, and F.C. Krebs. Water-induced degradation of polymer solar cells studied by H218O labeling. ACS Appl. Mater. Interfaces 1, 102 (2008).

    Article  CAS  Google Scholar 

  67. 67.

    H.L. Poh, F. Sanek, A. Ambrosi, G. Zhao, Z. Sofer, and M. Pumera: Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4, 3515 (2012).

    CAS  Article  Google Scholar 

  68. 68.

    M.T. Lloyd, D.C. Olson, P. Lu, E. Fang, D.L. Moore, M.S. White, M.O. Reese, D.S. Ginley, and J.W.P. Hsua: Impact of contact evolution on the shelf life of organic solar cells. J. Mater. Chem. 19, 7638 (2009).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are greatly indebted to Jonathan P. Wright for his invaluable help in performing the HR-XRD experiments. The authors acknowledge the European Union under Contract No. 309201 “GO-NEXTS”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Barbara Paci.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silvestri, F., Generosi, A., Guaragno, M. et al. In situ space-resolved X-ray diffraction and time-resolved EDXD on efficient polymer-based photovoltaic devices: Microstructural properties and aging effects. Journal of Materials Research 32, 1969–1981 (2017). https://doi.org/10.1557/jmr.2016.500

Download citation