Numerical analysis of thermal energy charging performance of spherical Cu@Cr@Ni phase-change capsules for recovering high-temperature waste heat

Abstract

Metallic phase-change materials (PCMs) attract much attention due to their high thermal conductivity in thermal energy storage. Our previous work reported a kind of Cu@Cr@Ni bilayer capsules, which could endure at least 1000 thermal cycles between 1323 and 1423 K without leakage, and might be a potential high-temperature metallic PCM. This study numerically investigates the thermal energy charging performance of Cu@Cr@Ni capsules for recovering high-temperature waste heat at both constant and periodically fluctuant heat transfer fluid temperatures. It was revealed that only a short and slight sloped melting platform existed in the curve of outlet temperature due to the ultrahigh thermal conductivity of copper; with higher inlet velocities, the outlet and mean temperatures of such PCM increased and meanwhile the energy transfer efficiency decreased; the outlet and mean temperatures of the PCM and the liquid fraction in it were rather insensitive to the period of the inlet temperature fluctuation; and the amplitude of inlet temperature fluctuation, ±50 K, was sharply reduced to 5 K due to the thermal damping of the PCM.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Abbreviations

A :

Porosity function

C :

Porosity constant

Cp,Cf:

Specific heat, J/(kg K)

g :

Gravitational acceleration

H :

Enthalpy, J

h :

Sensitive heat, J; surface heat transfer coefficient, W/(m2 K)

k :

Thermal conductivity, W/(mK)

ΔH:

Latent heat, J

L :

The specific latent heat, J/kg

P :

Pressure, Pa

Sx,Sy:

Momentum source term

S b :

Buoyancy source term

Ra :

Rayleigh number

S h :

Energy source term

sin:

Sine function

t :

Time, s

T :

Temperature, K

u :

Velocity, m/s

\(\vec {u}\) :

Velocity vector

Nu:

Nusselt number

Re:

Reynold number

n :

Constant

d :

Equivalent diameter

R :

Thermal resistance

x :

x coordinate

y :

y coordinate

∇:

Laplace operator

β:

Thermal expansion coefficient, K−1

ρ:

Density, kg/m3

μ:

Dynamic viscosity, kg/(m s)

γ:

Liquid fraction

ε:

Small constant to avoid division by zero

η:

Energy transfer efficiency

δ:

The boundary layer thickness

v:

Kinematic viscosity

α:

Thermal diffusivity

ref:

Reference value

ini:

Initial value

in:

Inlet

out:

Outlet

f:

Fluid

b:

Buoyancy

shtc:

Surface heat transfer coefficient

References

  1. 1.

    R. Jacob and F. Bruno: Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renewable Sustainable Energy Rev. 48, 79 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    P.L. Wang, X. Wang, Y. Huang, C. Li, Z.J. Peng, and Y.L. Ding: Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs). Appl. Energy 142, 328 (2015).

    Article  Google Scholar 

  3. 3.

    N. Maruoka, K. Sato, J. Yagi, and T. Akiyama: Development of PCM for recovering high temperature waste heat and utilization for producing hydrogen by reforming reaction of methane. ISIJ Int. 42, 215 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    W.G. Su, J. Darkwa, and G. Kokoginanakis: Review of solid–liquid phase change materials and their encapsulation technologies. Renewable Sustainable Energy Rev. 48, 373 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    S. Paria, S. Baradaran, A. Amiri, A.A.D. Sarhan, and S.N. Kazi: Performance evaluation of latent heat energy storage in horizontal shell-and-finned tube for solar application. J. Therm. Anal. Calorim. 123, 1371 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    S.Y. Wu, H. Wang, S. Xiao, and D.S. Zhu: Numerical simulation on thermal energy storage behavior of Cu/paraffin nanofluids PCMs. Procedia Eng. 31, 240 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    S.C. Lin and H.H. Al-Kayiem: Evaluation of copper nanoparticles-paraffin wax compositions for solar thermal energy storage. Sol. Energy 132, 267 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    J.P. Hadiya and A.K.N. Shukla: Experimental thermal behavior response of paraffin wax as storage unit: J. Therm. Anal. Calorim. 124, 1511 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    N. Wang, X.R. Zhang, D.S. Zhu, and J.W. Gao: The investigation of thermal conductivity and energy storage properties of graphite/paraffin composite. J. Therm. Anal. Calorim. 107, 949 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    E.M. Anghel, A. Georgiev, S. Petrescu, R. Popov, and M. Constantinescu: Thermo-physical characterization of some paraffins used as phase change materials for thermal energy storage. J. Therm. Anal. Calorim. 117, 557 (2014).

    Article  Google Scholar 

  11. 11.

    M. Akgun, O. Aydin, and K. Kaygusuz: Experimental study on melting/solidification characteristics of paraffin as PCM. Energy Convers. Manage. 48, 669 (2007).

    Article  CAS  Google Scholar 

  12. 12.

    G. Francesco and B. Enico: Physical–chemical properties evolution and thermal properties reliability of a paraffin wax under solar radiation exposure in a real-scale PCM window system. Energy Build. 119, 41 (2016).

    Article  Google Scholar 

  13. 13.

    M.M. Kenisarin: High-temperature phase change materials for thermal energy storage. Renewable Sustainable Energy Rev. 14, 955 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    A.B. Sheri, H. Wayne, P.R. James, and E.N. Robert: Phase change materials for thermal stabilization of composite thermistors. J. Mater. Res. 6, 175 (1991).

    Article  Google Scholar 

  15. 15.

    B.D. Babaev: System NaF–NaCl–NaNO3. Inorg. Mater. 38, 83 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    T.V. Gubanova, I.M. Kondratyuk, and I.K. Garkushin: The LiF–LiCl–Li2SO4–Li2MO4 quaternary system. Russ. J. Inorg. Chem. 51, 474 (2006).

    Article  Google Scholar 

  17. 17.

    T.V. Gubanova, E.I. Frolov, and I.K. Garkushin: LiF–LiVO3–Li2SO4–Li2MO4 four-component system. Russ. J. Inorg. Chem. 52, 308 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    J.D. Whittenberger and A.K. Misra: Identification of salt-alloy combinations for thermal energy storage applications in advanced solar dynamic power systems. J. Mater. Eng. 9, 293 (1987).

    CAS  Article  Google Scholar 

  19. 19.

    M. Ibrahim, P. Sokolov, T. Kerslake, and C. Tolbert: Experiment and computational investigations of phase change thermal energy storage canisters. J. Sol. Energy Eng. 122, 176 (2004).

    Article  Google Scholar 

  20. 20.

    R. Tamme, D. Laing, and W.D. Steinmann: Advanced thermal energy storage technology for parabolic trough. J. Sol. Energy Eng. 126, 794 (2004).

    Article  Google Scholar 

  21. 21.

    H.T. Cui, P.Y. Peng, and J.Z. Jiang: The status and prospect on Al-Si alloy and heat storage unit as phase change material for thermal energy storage. Mater. Rev. 28, 72 (2014).

    CAS  Google Scholar 

  22. 22.

    N. Maruoka, M. Asao, T. Miyako, M. Nakamoto, and T. Akiyama: Development of mesh-shaped PCM for high temperature application. Kagaku Kogaku Ronbunshu 28, 713 (2002).

    CAS  Article  Google Scholar 

  23. 23.

    N. Maruoka and T. Akiyama: Energy recovery from steelmaking off-gas by latent heat storage for methanol production. Energies 31, 1632 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    T. Akiyama, K. Oikawa, T. Shimada, E. Kasal, and J. Yagi: Thermodynamic analysis of thermochemical recovery of high temperature wastes. ISIJ Int. 40, 286 (2000).

    CAS  Article  Google Scholar 

  25. 25.

    H. Sugo, E. Kisi, and D. Cuskelly: Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications. Appl. Therm. Eng. 51, 1345 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    G.C. Zhang, J.Q. Li, Y.F. Chen, H. Xiang, B.Q. Ma, Z. Xu, and X.G. Ma: Encapsulation of copper-based phase change materials for high temperature thermal energy storage. Sol. Energy Mater. Sol. Cells 128, 131 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    J. Yagi and T. Akiyama: Storage of thermal energy for effective use of waste heat from industries. J. Mater. Process. Technol. 48, 793 (1995).

    Article  Google Scholar 

  28. 28.

    P. Blanco-Rodríguez, J. Rodríguez-Aseguinolaza, A. Gil, E. Risueño, B.D. Aguanno, I. Loroño, and L. Martín: Experiments on a lab scale TES unit using eutectic metal alloy as PCM. Energy Procedia 69, 769 (2015).

    Article  CAS  Google Scholar 

  29. 29.

    X.H. Yang, S.C. Tan, and J. Liu: Numerical investigation of the phase change process of low melting point metal. Int. J. Heat Mass Transfer 100, 899 (2016).

    Article  Google Scholar 

  30. 30.

    L. Xia, P. Zhang, and R.Z. Wang: Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model. Energies 35, 2022 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    D. Nemec and J. Levecb: Flow through packed bed reactors: 1. Single-phase flow. Chem. Eng. Sci. 60, 6947 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    T.E.W. Schumann: Heat transfer: A liquid flowing through a porous prism. J. Franklin Inst. 208, 405 (1929).

    CAS  Article  Google Scholar 

  33. 33.

    C. Arkarv and S. Medved: Influence of accuracy of thermal property data of phase change material on the result of numerical model of packed bed latent heat storage with spheres. Thermochim. Acta 438, 192 (2005).

    Article  CAS  Google Scholar 

  34. 34.

    A.F. Regin, S.C. Solanki, and J.S. Saini: An analysis of packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation. Renewable Energy 34, 1765 (2009).

    Article  CAS  Google Scholar 

  35. 35.

    K.A.R. Ismail and R. Stuginsky: A parametric study on possible fixed bed models for PCM and sensible heat storage. Appl. Therm. Eng. 19, 757 (1999).

    Article  Google Scholar 

  36. 36.

    S. Bellan, J. Gonzalez-Aguilar, M. Remero, M.M. Rahman, D.Y. Goswami, E.K. Stefanakos, and D. Couling: Numerical analysis of charging and discharging performance of a thermal energy storage system with encapsulated phase change. Appl. Therm. Eng. 71, 481 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    V. Voller and C. Prakash: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int. J. Heat Mass Transfer 30, 1709 (1987).

    CAS  Article  Google Scholar 

  38. 38.

    A. Brent, V. Voller, and K. Reid: Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal. Numer. Heat Transfer 13, 297 (1988).

    Article  Google Scholar 

  39. 39.

    V. Shatikian, G. Ziskind, and R. Letan: Numerical investigation of a PCM-based heat sink with internal fins. Int. J. Heat Mass Transfer 48, 3689 (2005).

    CAS  Article  Google Scholar 

  40. 40.

    X.W. Wang and W. Ge: The Mole-8.5 supercomputing system. In Contemporary High Performance Computing (CRC Press, New York, 2013); p. 75.

    Google Scholar 

  41. 41.

    L. Yang, X.S. Zhang, and G.Y. Xu: Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points. Energy Build. 68, 639 (2014).

    Article  Google Scholar 

  42. 42.

    T. Koushsou, F. Strub, J.C. Lasvignottes, A. Jamil, and J.P. Bédécarrats: Second law analysis of latent thermal storage for solar system. Sol. Energy Mater. Sol. Cells 91, 1275 (2007).

    Article  CAS  Google Scholar 

  43. 43.

    T. Nomura, M. Tsubota, T. Oya, N. Okinaka, and T. Akiyama: Heat storage in direct-contact heat exchanger with phase change material. Appl. Therm. Eng. 50, 26 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    A.R. Archibold, J. Gonzalez-Aguilar, M.M. Rahman, D.Y. Goswami, M. Romero, and E.K. Stefanakos: The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells. Appl. Energy 116, 243 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    P. Charvat, L. Klimes, J. Stetina, and M. Ostry: Thermal storage as a way to attenuate fluid-temperature fluctuations: Sensible-heat versus latent-heat storage materials. Mater. Technol. 48, 423 (2014).

    Google Scholar 

  46. 46.

    C.J. Ho and C.H. Chu: Periodic melting within a square enclosure with an oscillatory surface temperature. Int. J. Heat Mass Transfer 36, 725 (1993).

    CAS  Article  Google Scholar 

  47. 47.

    G.H. Tan and C.J. Ho: Experiments on thermal characteristics of a natural circulation loop with latent heat energy storage under cyclic pulsed heat load. Heat Mass Transfer 39, 11 (2002).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51274182, 51471158, 61274015, and U1407105). Partial work was also supported by Open Funding Project of the State Key Laboratory of Biochemical Engineering (Grant No. 2014KF-04), National Key Research and Development Program (Grant No. 2016YFC0700905), National Key Research and Development Program of China (Grant No. 2016YFB0601103), and the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201520).

The Mole-8.5 Supercomputing System was developed by Institute of Process Engineering, Chinese Academy of Sciences.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Peng or Jianqiang Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Peng, Z., Ma, B. et al. Numerical analysis of thermal energy charging performance of spherical Cu@Cr@Ni phase-change capsules for recovering high-temperature waste heat. Journal of Materials Research 32, 1138–1148 (2017). https://doi.org/10.1557/jmr.2016.493

Download citation