Effect of temperature on the growth of a-axis ZnO films: a reactive force field-based molecular dynamics study


Understanding film initiation and growth mechanisms at the atomic level is crucial to obtain high-quality nonpolar ZnO films. Using the advanced reactive force field-based molecular dynamics method, we theoretically studied the effect of substrate temperature (350–950 K) on the quality, layer develop mechanism and defect formation of ZnO films. Investigation of the energy, radial distribution function, layer coverage, sputtering and injecting phenomena indicated that the present films grown at 500–600 K possessed the optimal quality. Further investigation of the growth condition, instant film profiles, interfacial microstructure evolutions and layered snapshots revealed that, addition of atoms on newly formed localized films can induce some partially bonded or extruded atoms out of the film plane. Further adherence of depositing atoms to these unstable or extruded atoms induces the initiation and growth of a new layer.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K.H. Ploog: Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki: Electronic structure: Wide-band, narrow-band, and strongly correlated systems. Phys. Rev. B: Condens. Matter Mater. Phys. 62, R13302 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    J.S. Wang and K.M. Lakin: c-Axis inclined ZnO piezoelectric shear wave films. Appl. Phys. Lett. 42, 352 (1983).

    CAS  Article  Google Scholar 

  4. 4.

    L.C. Nistor, C. Ghica, D. Matei, G. Dinescub, M. Dinescub, and G. Van Tendelooc: Growth and characterization of a-axis textured ZnO thin films. J. Cryst. Growth 277, 26 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    Y.G. Cui, G.T. Du, Y.T. Zhang, H.C. Zhu, and B.L. Zhang: Growth of ZnO(002) and ZnO(100) films on GaAs substrates by MOCVD. J. Cryst. Growth 282, 389 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    S.S. Chen, X.H. Pan, P. Ding, H.H. Zhang, W. Chen, W. Dai, J.Y. Huang, and Z.Z. Ye: Effect of high temperature thermal treatment of (100) γ-LiAlO2 substrate on epitaxial growth of ZnO films by plasma-assisted molecular beam epitaxy. Thin Solid Films 564, 156 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    C.Y. Lee, C.L. Chen, L.W. Chang, and M.M.C. Chou: Growth of nonpolar ZnO films on (100) beta-LiGaO2 substrate by molecular beam epitaxy. J. Cryst. Growth 407, 11 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    S.K. Han, S.K. Hong, J.W. Lee, J.G. Kim, M. Jeong, J.Y. Lee, S.I. Hong, J.S. Park, Y.E. Ihm, J.S. Ha, and T. Yao: Properties of a-plane ZnO films on sapphire substrates grown at different temperatures by plasma-assist molecular beam epitaxy. Thin Solid Films 519, 6394 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    P. Ding, X.H. Pan, J.Y. Huang, B. Lu, H.H. Zhang, W. Chen, and Z.Z. Ye: Growth of p-type a-plane ZnO thin films on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Mater. Lett. 71, 18 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    X.Y. Han, J.N. Dai, and C.H. Yu: A reproducible low temperature chemical solution deposition of non-polar \(\left[{11\bar 20} \right]\) and \(\left[{10\bar 10} \right]\) ZnO films for optoelectronic applications. Appl. Surf. Sci.256, 4682 (2010).

  11. 11.

    J. Elanchezhiyan, K.R. Bae, W.J. Lee, B.C. Shin, and S.C. Kim: Growth and characterization of non-polar ZnO thin films by pulsed laser deposition. Mater. Lett. 64, 1190 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    J.G. Lu, Z.Z. Ye, J.Y. Huang, L. Wang, and B.H. Zhao: Synthesis and properties of ZnO films with (100) orientation by SS-CVD. Appl. Surf. Sci. 207, 295 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    X.L. Chen, X.H. Geng, J.M. Xue, D.K. Zhang, G.F. Hou, and Y. Zhao: Temperature-dependent growth of zinc oxide thin films grown by metal organic chemical vapor deposition. J. Cryst. Growth 296, 43 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    K.W. Kim, H.S. Son, N.J. Choi, J. Kim, and S.N. Lee: Growth and characterization of polar and nonpolar ZnO film grown on sapphire substrates by using atomic layer deposition. Thin Solid Films 546, 114 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    S.B. Zhu, Y. Geng, H.L. Lu, Y. Zhang, Q.Q. Sun, S.J. Ding, and D.W. Zhang: Effects of rapid thermal annealing on Hf-doped ZnO films grown by atomic layer deposition. J. Alloys Compd. 577, 340 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    J.N. Dai, X.Y. Han, Z.H. Wu, C.H. Yu, R.F. Xiang, Q.H. He, Y.H. Gao, C.Q. Chen, X.H. Xiao, and T.C. Peng: Growth of non-polar ZnO films on a-GaN/r-Al2O3 templates by radio-frequency magnetron sputtering. J. Alloys Compd. 489, 519 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    M.B. Shahzad, H. Lu, P. Wang, and Y. Qi: A novel approach for controlled oriented growth of non-polar m-plane ZnO thin films via low temperature chemical solution route. CrystEngComm 14, 7123 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    N.S. Yu, D.P. Dong, Y. Qi, Y.F. Wu, and L. Chen: Ultraviolet photoconductive detectors based on a-plane ZnO film grow by hydrothermal method. J. Electron. Mater. 45, 1073 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    L. Qi, M.B. Shahzad, and Y. Qi: A reproducible low temperature chemical solution deposition of non-polar \(\left[{11\bar 20} \right]\) and \(\left[{10\bar 10} \right]\) ZnO films for optoelectronic applications. CrystEngComm18, 6573 (2016).

  20. 20.

    S.Y. Ma, X.R. Shang, L.G. Ma, and C. Su: Influence of oxygen partial pressure on the micro-structural and optical properties of Cu-doped ZnO films. J. Northwest Norm. Univ., Nat. Sci. 47, 15 (2011).

    CAS  Google Scholar 

  21. 21.

    E.J. Tarsa, B. Heying, X.H. Wu, P. Fini, S.P. DenBaars, and J.S. Speck: Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 82, 5472 (1997).

    CAS  Article  Google Scholar 

  22. 22.

    B.Y. Zhang, B. Yao, S.P. Wang, Y.F. Li, C.X. Shan, J.Y. Zhang, B.H. Li, Z.Z. Zhang, and D.Z. Shen: Influence of Zn/O ratio on structural, electrical and optical properties of ZnO thin films fabricated by plasma-assisted molecular beam epitaxy. J. Alloys Compd. 503, 155 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    S.K. Han, J.H. Kim, S.K. Hong, J.H. Song, J.W. Lee, J.Y. Lee, S.I. Hong, and T. Yao: Investigation of nonpolar \(\left({11\bar 20} \right)\)a-plane ZnO films grown under various Zn/O ratios by plasma-assisted molecular beam epitaxy. J. Cryst. Growth312, 2196 (2010).

  24. 24.

    Y.L. Liu, M. Babar Shahzad, and Y. Qi: Growth of a-axis ZnO films on the defective substrate with different O/Zn ratios: A reactive force field based molecular dynamics study. J. Alloys Compd. 628, 317 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    A.C.T. van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard, III: ReaxFF: A reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396 (2001).

    Article  Google Scholar 

  26. 26.

    A.C.T. van Duin, A. Strachan, S. Stewman, Q.S. Zhang, X. Xu, and W.A. Goddard, III: ReaxFFSiO reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 107, 3803 (2003).

    Article  Google Scholar 

  27. 27.

    Q. Zhang, T. Cagin, A.C.T. van Duin, W.A. Goddard, III, Y. Qi, and L.G. Hector: Adhesion and nonwetting-wetting transition in the Al/α−Al2O3 interface. Phys. Rev. B: Condens. Matter Mater. Phys. 69, 045423 (2004).

    Article  Google Scholar 

  28. 28.

    Y.L. Liu, H. Liu, W. Li, and Y. Qi: Effect of substrate temperature on the growth and microstructure of ZnO film. Acta Phys.-Chim. Sin. 29, 631 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    D. Raymand, A.C.T. van Duin, M. Baudin, and K. Hermansson: A reactive force field (ReaxFF) for zinc oxide. Surf. Sci. 602, 1020 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    S.J. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    CAS  Article  Google Scholar 

  31. 31.

    T. Tsuji and M. Hirohashi: Influence of oxygen partial pressure on transparency and conductivity of RF sputtered Al-doped ZnO thin films. Appl. Surf. Sci. 158, 134 (2000).

    Article  Google Scholar 

  32. 32.

    P. Vennegues, J.M. Chauveau, M. Korytov, C. Deparis, J. Zuniga-perez, C. Morhain: Ultraviolet photoconductive detectors based on a-plane ZnO film grow by hydrothermal method. J. Appl. Phys. 103, 083525 (2008).

    Article  Google Scholar 

  33. 33.

    M.D. McCluskey and S.J. Jolela: Defects in ZnO. J. Appl. Phys. 106, 071101 (2009).

    Article  Google Scholar 

  34. 34.

    H.K. Yadav, K. Sreenivas, V. Gupta, S.P. Singh, and R.S. Katiyar: Effect of surface defects on the visible emission from ZnO nanoparticles. J. Mater. Res. 22, 2404 (2011).

    Article  Google Scholar 

Download references


This research was financially supported by the Fundamental Research Funds for the Central Universities (No. L1502038) and the National Natural Science Foundation of China (No. 51172040 and 51371177). This work was conducted in Shenyang Supercomputer Center at the Institute of Metals Research.

Author information



Corresponding author

Correspondence to Y. Qi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.L., Dong, C.H., Sun, B.Z. et al. Effect of temperature on the growth of a-axis ZnO films: a reactive force field-based molecular dynamics study. Journal of Materials Research 32, 522–529 (2017). https://doi.org/10.1557/jmr.2016.491

Download citation