Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods

Abstract

Transition metal dichalcogenides such as WS2 show exciting promise in electronic and optoelectronic applications. Significant variations in the transport, Raman, and photoluminescence (PL) can be found in the literature, yet it is rarely addressed why this is. In this report, Raman and PL of monolayered WS2 produced via different methods are studied and distinct features that indicate the degree of crystallinity of the material are observed. While the intensity of the LA(M) Raman mode is found to be a useful indicator to assess the crystallinity, PL is drastically more sensitive to the quality of the material than Raman spectroscopy. We also show that even exfoliated crystals, which are usually regarded as the most pristine material, can contain large amounts of defects that would not be apparent without Raman and PL measurements. These findings can be applied to the understanding of other two-dimensional heterostructured systems.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6(3), 183 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong: Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6(10), 8583 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, and J. Hone: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    K.S. Novoselov and A.H. Castro Neto: Two-dimensional crystals-based heterostructures: Materials with tailored properties. Phys. Scr. T146, 014006 (2012).

    Article  CAS  Google Scholar 

  5. 5.

    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    A. Berkdemir, H.R. Gutierrez, A.R. Botello-Mendez, N. Perea-Lopez, A.L. Elias, C-I. Chia, B. Wang, V.H. Crespi, F. Lopez-Urias, J-C. Charlier, H. Terrones, and M. Terrones: Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755 (2013).

    Article  CAS  Google Scholar 

  7. 7.

    M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263 (2013).

    Article  Google Scholar 

  8. 8.

    K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010).

    Article  CAS  Google Scholar 

  9. 9.

    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, and M.C. Hersam: Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    R. Ganatra and Q. Zhang: Few-layer MoS2: A promising layered semiconductor. ACS Nano 8(5), 4074 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, and M. Terrones: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13(8), 3447 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    A.L. Elias, N. Perea-Lopez, A. Castro-Beltran, A. Berkdemir, R.T. Lv, S.M. Feng, A.D. Long, T. Hayashi, Y.A. Kim, M. Endo, H.R. Gutierrez, N.R. Pradhan, L. Balicas, T.E.M. Houk, F. Lopez-Urias, H. Terrones, and M. Terrones: Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 7(6), 5235 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    C.M. Orofeo, S. Suzuki, Y. Sekine, and H. Hibino: Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Appl. Phys. Lett. 105(8), 83112 (2014).

    Article  CAS  Google Scholar 

  16. 16.

    S. Jo, N. Ubrig, H. Berger, A.B. Kuzmenko, and A.F. Morpurgo: Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 14(4), 2019 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H.Y. Hwang, Y. Cui, and Z. Liu: Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7(10), 8963 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Y. Rong, Y. Fan, A. Leen Koh, A.W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J.H. Warner: Controlling sulphur precursor addition for large single crystal domains of WS2. Nanoscale 6(20), 12096 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P-H. Tan, and G. Eda: Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1), 791 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    A.A. Mitioglu, P. Plochocka, J.N. Jadczak, W. Escoffier, G.L.J.A. Rikken, L. Kulyuk, and D.K. Maude: Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 88(24), 245403 (2013).

    Article  CAS  Google Scholar 

  21. 21.

    H.L. Zeng, G.B. Liu, J.F. Dai, Y.J. Yan, B.R. Zhu, R.C. He, L. Xie, S.J. Xu, X.H. Chen, W. Yao, and X.D. Cui: Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).

    Article  CAS  Google Scholar 

  22. 22.

    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10451 (2005).

    CAS  Article  Google Scholar 

  23. 23.

    G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M.W. Chen, and M. Chhowalla: Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    H.S.S.R. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, and C.N.R. Rao: MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed. 49(24), 4059 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    R.F. Frindt: Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37(4), 1928 (1966).

    CAS  Article  Google Scholar 

  27. 27.

    P. Joensen, R.F. Frindt, and S.R. Morrison: Single layer MoS2. Mater. Res. Bull. 21(4), 457 (1986).

    CAS  Article  Google Scholar 

  28. 28.

    K. Golasa, M. Grzeszczyk, K.P. Korona, R. Bozek, J. Binder, J. Szczytko, A. Wysmolek, and A. Babinski: Optical properties of molybdenum disulfide (MoS2). Acta Phys. Pol., A 124(5), 849 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    H. Schäfer, T. Grofe, and M. Trenkel: The chemical transport of molybdenum and tungsten and of their dioxides and sulfides. J. Solid State Chem. 8(1), 14 (1973).

    Article  Google Scholar 

  30. 30.

    R.M.A. Lieth: Preparation and Crystal Growth of Materials with Layered Structures, Vol. 1 (D. Reidel Pub. Co, Dordrecht, 1977).

    Google Scholar 

  31. 31.

    V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, and J.N. Coleman: Liquid exfoliation of layered materials. Science 340(6139), 1420 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    M.S. Dresselhaus and G. Dresselhaus: Intercalation compounds of graphite. Adv. Phys. 30(2), 139 (1981).

    CAS  Article  Google Scholar 

  33. 33.

    A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y.M. You, G.H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, and J.C. Hone: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12(6), 554 (2013).

    Article  CAS  Google Scholar 

  34. 34.

    J.C. Shaw, H. Zhou, Y. Chen, N.O. Weiss, Y. Liu, Y. Huang, and X. Duan: Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 7(4), 511 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang, K.F. Mak, C-J. Kim, D. Muller, and J. Park: High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    A. Splendiani, L. Sun, Y.B. Zhang, T.S. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    B.W.H. Baugher, H.O.H. Churchill, Y. Yang, and P. Jarillo-Herrero: Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13(9), 4212 (2013).

    CAS  Article  Google Scholar 

  38. 38.

    H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, and A. Javey: High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12(7), 3788 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    M. Amani, M.L. Chin, A.G. Birdwell, T.P. O’Regan, S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, and M. Dubey: Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. 102(19), 193107 (2013).

    Article  CAS  Google Scholar 

  40. 40.

    N. Perea-Lopez, A.L. Elias, A. Berkdemir, A. Castro-Beltran, H.R. Gutierrez, S. Feng, R. Lv, T. Hayashi, F. Lopez-Urias, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones: Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23(44), 5511 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    N. Perea-López, Z. Lin, N. Pradhan, A. Iñiguez-Rábago, A.L. Elías, A. McCreary, J. Lou, P.M. Ajayan, H. Terrones, L. Balicas, and M. Terrones: CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 1(1), 011004 (2014).

    Article  CAS  Google Scholar 

  42. 42.

    C-C. Wu, D. Jariwala, V.K. Sangwan, T.J. Marks, M.C. Hersam, and L.J. Lauhon: Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy. J. Phys. Chem. Lett. 4(15), 2508 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    B.W.H. Baugher, H.O.H. Churchill, Y. Yang, and P. Jarillo-Herrero: Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9(4), 262 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H. Castro Neto, and K.S. Novoselov: Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    Y.D. Ma, Y. Dai, M. Guo, C.W. Niu, J.B. Lu, and B.B. Huang: Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 13(34), 15546 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    Z. Zhang, X. Zou, V.H. Crespi, and B.I. Yakobson: Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano 7(12), 10475 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    K.F. Mak, K.L. He, J. Shan, and T.F. Heinz: Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7(8), 494 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    K.F. Mak, K.L. McGill, J. Park, and P.L. McEuen: The valley Hall effect in MoS2 transistors. Science 344(6191), 1489 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C.W. Magnuson, E. Tutuc, B.I. Yakobson, K.F. McCarty, Y-W. Zhang, P. Kim, J. Hone, L. Colombo, and R.S. Ruoff: The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342(6159), 720 (2013).

    CAS  Article  Google Scholar 

  50. 50.

    I. Vlassiouk, M. Regmi, P.F. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov: Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5(7), 6069 (2011).

    CAS  Article  Google Scholar 

  51. 51.

    J.D. Wood, S.W. Schmucker, A.S. Lyons, E. Pop, and J.W. Lyding: Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11(11), 4547 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    X. Li, W. Cai, L. Colombo, and R.S. Ruoff: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9(12), 4268 (2009).

    CAS  Article  Google Scholar 

  53. 53.

    W.C. Shin, T. Yoon, J.H. Mun, T.Y. Kim, S-Y. Choi, T-S. Kim, and B.J. Cho: Doping suppression and mobility enhancement of graphene transistors fabricated using an adhesion promoting dry transfer process. Appl. Phys. Lett. 103(24), 243504 (2013).

    Article  CAS  Google Scholar 

  54. 54.

    C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, and A.C. Ferrari: Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91(23), 233108 (2007).

    Article  CAS  Google Scholar 

  55. 55.

    C. Casiraghi: Probing disorder and charged impurities in graphene by Raman spectroscopy. Phys. Status Solidi RRL 3(6), 175 (2009).

    CAS  Article  Google Scholar 

  56. 56.

    Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P-H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu: Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 13(8), 3870 (2013).

    CAS  Article  Google Scholar 

  57. 57.

    M. Amani, M.L. Chin, A.M. Mazzoni, R.A. Burke, S. Najmaei, P.M. Ajayan, J. Lou, and M. Dubey: Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors. Appl. Phys. Lett. 104(20), 203506 (2014).

    Article  CAS  Google Scholar 

  58. 58.

    W. Zhou, X.L. Zou, S. Najmaei, Z. Liu, Y.M. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, and J.C. Idrobo: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615 (2013).

    CAS  Article  Google Scholar 

  59. 59.

    A. Azizi, X. Zou, P. Ercuis, Z. Zhang, A.L. Elias, N. Perea-Lopez, M. Terrones, B.I. Yakobson, and N. Alem: Atomic-scale observation of grains and grain boundary in monolayers of WS2. Microsc. Microanal. 20(S3), 1084 (2014).

    Article  Google Scholar 

  60. 60.

    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006).

    CAS  Article  Google Scholar 

  61. 61.

    H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, and D. Baillargeat: From bulk to monolayer MoS2: Evolution of raman scattering. Adv. Funct. Mat. 22(7), 1385 (2012).

    CAS  Article  Google Scholar 

  62. 62.

    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu: Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695 (2010).

    CAS  Article  Google Scholar 

  63. 63.

    Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2(11), 2301 (2008).

    CAS  Article  Google Scholar 

  64. 64.

    T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, and A.C. Ferrari: Uniaxial strain in graphene by raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 79(20), 205433 (2009).

    Article  CAS  Google Scholar 

  65. 65.

    C. Rice, R.J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K.S. Novoselov: Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 87(8), 081307(R) (2013).

    Article  CAS  Google Scholar 

  66. 66.

    H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, Jr., S.T. Pantelides, and K.I. Bolotin: Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13(8), 3626 (2013).

    CAS  Article  Google Scholar 

  67. 67.

    S.B. Desai, G. Seol, J.S. Kang, H. Fang, C. Battaglia, R. Kapadia, J.W. Ager, J. Guo, and A. Javey: Strain-induced indirect to direct bandgap transition in multi layer WSe2. Nano Lett. 14(8), 4592 (2014).

    CAS  Article  Google Scholar 

  68. 68.

    A.C. Ferrari: Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1–2), 47 (2007).

    CAS  Article  Google Scholar 

  69. 69.

    A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, and A.K. Sood: Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3(4), 210 (2008).

    CAS  Article  Google Scholar 

  70. 70.

    K.F. Mak, K.L. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, and J. Shan: Tightly bound trions in monolayer MoS2. Nat. Mater. 12(3), 207 (2013).

    CAS  Article  Google Scholar 

  71. 71.

    H. Terrones, E. Del Corro, S. Feng, J.M. Poumirol, D.R. Rhodes, D. Smirnov, N.R. Pradhan, Z. Lin, M.A.T. Nguyen, A.L. Elias, T.E.M. Mallouk, L. Balicas, M.A. Pimenta, and M. Terrones: New first order Raman-active modes in few layered transition metal dichalcogenides. Sci. Rep. 4, 4215 (2014).

    CAS  Article  Google Scholar 

  72. 72.

    S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, and D. Roy: Effects of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 91(19), 195411 (2015).

    Article  CAS  Google Scholar 

  73. 73.

    A. Pisoni, J. Jacimovic, O.S. Barisic, A. Walter, B. Nafradi, P. Bugnon, A. Magrez, H. Berger, Z. Revay, and L. Forro: The role of transport agents in MoS2 single crystals. J. Phys. Chem. C 119(8), 3918 (2015).

    CAS  Article  Google Scholar 

  74. 74.

    J.B. Legma, G. Vacquier, and A. Casalot: Chemical-vapor transport of molybdenum and tungsten diselenides by various transport agents. J. Crystal Growth 130(1–2), 253 (1993).

    CAS  Article  Google Scholar 

  75. 75.

    N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E.K.L. Yeow, and T. Yu: Nonblinking, intense two-dimensional light emitter: Mono layer WS2 triangles. ACS Nano 7(12), 10985 (2013).

    CAS  Article  Google Scholar 

  76. 76.

    S. Mouri, Y. Miyauchi, and K. Matsuda: Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13(12), 5944 (2013).

    CAS  Article  Google Scholar 

  77. 77.

    D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B.J. Robinson, E.A. Chekhovich, I.I. Tartakovskii, O. Kolosov, and A.I. Tartakovskii: Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 3, 3489 (2013).

    CAS  Article  Google Scholar 

  78. 78.

    S. Najmaei, Z. Liu, W. Zhou, X.L. Zou, G. Shi, S.D. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, and J. Lou: Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754 (2013).

    CAS  Article  Google Scholar 

  79. 79.

    A.M. Jones, H. Yu, J.S. Ross, P. Klement, N.J. Ghimire, J. Yan, D.G. Mandrus, W. Yao, and X. Xu: Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 10(2), 130 (2014).

    CAS  Article  Google Scholar 

  80. 80.

    J.S. Ross, S.F. Wu, H.Y. Yu, N.J. Ghimire, A.M. Jones, G. Aivazian, J.Q. Yan, D.G. Mandrus, D. Xiao, W. Yao, and X.D. Xu: Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

    Article  CAS  Google Scholar 

  81. 81.

    J.D. Lin, C. Han, F. Wang, R. Wang, D. Xiang, S. Qin, X-A. Zhang, L. Wang, H. Zhang, A.T.S. Wee, and W. Chen: Electron-Doping-enhanced trion formation in mono layer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 8(5), 5323 (2014).

    CAS  Article  Google Scholar 

  82. 82.

    S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J.S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J.C. Grossman, and J. Wu: Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).

    Article  Google Scholar 

  83. 83.

    P.K. Chow, R.B. Jacobs-Gedrim, J. Gao, T-M. Lu, B. Yu, H. Terrones, and N. Koratkar: Defect-induced photoluminescence in mono layer semiconducting transition metal dichalcogenides. ACS Nano 9(2), 1520 (2015).

    CAS  Article  Google Scholar 

  84. 84.

    G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L. Liang, S.G. Louie, E. Ringe, W. Zhou, S.S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones, and J. Robinson: Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12), 11509 (2015).

    CAS  Article  Google Scholar 

  85. 85.

    Y. Gong, Z. Liu, A.R. Lupini, G. Shi, J. Lin, S. Najmaei, Z. Lin, A.L. Elias, A. Berkdemir, G. You, H. Terrones, M. Terrones, R. Vajtai, S.T. Pantelides, S.J. Pennycook, J. Lou, W. Zhou, and P.M. Ajayan: Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 14(2), 442 (2014).

    CAS  Article  Google Scholar 

  86. 86.

    Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, and P.M. Ajayan: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135 (2014).

    CAS  Article  Google Scholar 

  87. 87.

    S. Das, J.A. Robinson, M. Dubey, H. Terrones, and M. Terrones: Beyond graphene: Progress in novel two-dimensional materials and van der waals solids. Annu. Rev. Mater. Res. 45, 1 (2015).

    CAS  Article  Google Scholar 

  88. 88.

    R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y.F. Sun, T.E. Mallouk, and M. Terrones: Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48(1), 56 (2015).

    CAS  Article  Google Scholar 

  89. 89.

    H. Terrones, F. Lopez-Urias, and M. Terrones: Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, 1549 (2013).

    Article  CAS  Google Scholar 

  90. 90.

    F. Ceballos, M.Z. Bellus, H-Y. Chiu, and H. Zhao: Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. ACS Nano 8(12), 12717 (2014).

    CAS  Article  Google Scholar 

  91. 91.

    M.Z. Bellus, F. Ceballos, H-Y. Chiu, and H. Zhao: Tightly bound trions in transition metal dichalcogenide heterostructures. ACS Nano 9(6), 6459 (2015).

    CAS  Article  Google Scholar 

  92. 92.

    A.K. Geim and I.V. Grigorieval: van der Waals heterostructures. Nature 499(7459), 419 (2013).

    CAS  Article  Google Scholar 

  93. 93.

    C.H. Lui, Z. Ye, C. Ji, K-C. Chiu, C-T. Chou, T.I. Andersen, C. Means-Shively, H. Anderson, J-M. Wu, T. Kidd, Y-H. Lee, and R. He: Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 91(16), 165403 (2015).

    Article  CAS  Google Scholar 

  94. 94.

    N. Huo, Z. Wei, X. Meng, J. Kang, F. Wu, S-S. Li, S-H. Wei, and J. Li: Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2. J. Mater. Chem. C 3(21), 5467 (2015).

    CAS  Article  Google Scholar 

  95. 95.

    N. Huo, S. Tongay, W. Guo, R. Li, C. Fan, F. Lu, J. Yang, B. Li, Y. Li, and Z. Wei: Novel optical and electrical transport properties in atomically thin WSe2/MoS2 p-n heterostructures. Adv. Electron. Mater. 1(5), 1400066 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

A.M., M.A.N., A.L.E., N.P.L, T.E.M., and M.T. acknowledge the financial support from the U.S. Army Research Office under the MURI ALNOS project No. W911NF-11-1-0362. J.W., J.Z., and M.T. were supported by the Center for Nanoscale Science, an NSF Materials Research Science and Engineering Center, under the award DMR-1420620. A.L.E. acknowledges the support from the National Science Foundation (EFRI-1433311). D.A.C. acknowledges funding through a user project supported by ORNL’s Center for Nanophase Materials Science (CNMS) which is a Department of Energy, Office of Science User Facility. V.C. acknowledges support from The Brazilian National Council for Scientific and Technological Development (CNPq) — (249070/2013-8).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mauricio Terrones.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McCreary, A., Berkdemir, A., Wang, J. et al. Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods. Journal of Materials Research 31, 931–944 (2016). https://doi.org/10.1557/jmr.2016.47

Download citation