Facile preparation of reduced graphene by optimizing oxidation condition and further reducing the exfoliated products


A cost-effective and highly efficient method was proposed for preparing reduced graphene (rEG) by modified Hummers approach. The influence of ratio of KMnO4 to graphite, oxidation time and oxidation temperature on oxidative degree of graphite oxide (GO) was investigated by x-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The thermal exfoliated graphene (EG) was characterized with transmission electron microscopy (TEM), FTIR, Raman spectrum and Brunauer–Emmett–Teller (BET) method. The EG was treated for 4 h at 800 °C with H2/Ar mixed atmosphere (15/85, v%) to remove the residual functional groups. The characterization of x-ray photoelectron spectroscopy (XPS) showed that rEG contains less functional groups than EG, which shows the C/O ratio increased from 10.6 (EG) to 34.71 (rEG). The results indicate that treating EG with a mixed H2/Ar atmosphere (15/85, v%) remarkably removes residual functional groups of EG, supplying a simple and feasible approach with large scale production of reduced graphene.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5


  1. 1.

    W. Wei and X. Qu: Extraordinary physical properties of functionalized graphene. Small 8, 2138 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    T. Ji, M. Sun, and P. Han: A review of the preparation and applications of graphene/semiconductor composites. Carbon 70, 1967 (2014).

    Article  Google Scholar 

  3. 3.

    S. Yang, W. Lin, Y. Huang, H. Tien, J. Wang, and C.C.M. Ma: Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49, 793 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    J. Kim and S. Kim: Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode. Electrochim. Acta 119, 11 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    W. Li, X. Geng, Y. Guo, J. Rong, Y. Gong, L. Wu, X. Zhang, P. Li, J. Xu, G. Cheng, M. Sun, and L. Liu: Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5, 6955 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    A. Wisitsoraat and A. Tuantranont: Graphene-based chemical and biosensors. Small 9, 1160 (2013).

    Article  Google Scholar 

  7. 7.

    B.R. Burg and D. Poulikakos: Large-scale integration of single-walled carbon nanotubes and graphene into sensors and devices using dielectrophoresis: A review. J. Mater. Res. 26, 2123 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    S. Bae, H.K. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, D. Im, T. Lei, Y.I. Song, Y.J. Kim, K.S. Kim, B. Özyilmaz, J.H. Ahn, B.H. Hong, and S. Iijima: 30 inch roll-based production of high-quality graphene films for flexible transparent electrodes. Physics 5, 574 (2010).

    CAS  Google Scholar 

  9. 9.

    S. Choubak, P.L. Levesque, E. Gaufres, M. Biron, P. Desjardins, and R. Martel: Graphene CVD: Interplay between growth and etching on morphology and stacking by hydrogen and oxidizing impurities. J. Phys. Chem. C 118, 21532 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    L. Zhu, X. Zhao, Y. Li, X. Yu, C. Li, and Q. Zhang: High-quality production of graphene by liquid-phase exfoliation of expanded graphite. Mater. Chem. Phys. 137, 984 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    W. Du, X. Jiang, and L. Zhu: From graphite to graphene: Direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J. Mater. Chem. A 1, 10592 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    L. Huang, B. Wu, J. Chen, Y. Xue, D. Geng, Y. Guo, G. Yu, and Y. Liu: Gram-scale synthesis of graphene sheets by a catalytic arc-discharge method. Small 9, 1330 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu: Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48, 255 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    U.K. Parashar, S. Bhandari, R.K. Srivastava, D. Jariwalab, and A. Srivastava: Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes. Nanoscale 3, 3876 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    S. Zhang, Y. Shao, H. Liao, M.H. Engelhard, G. Yin, and Y. Lin: Polyelectrolyte-induced reduction of exfoliated graphite oxide: A facile route to synthesis of soluble graphene nanosheets. ACS Nano 5, 1785 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    B. Yuana, C. Bao, X. Qian, P. Wen, W. Xing, L. Song, and Y. Hu: A facile approach to prepare graphene via solvothermal reduction of graphite oxide. Mater. Res. Bull. 55, 48 (2014).

    Article  Google Scholar 

  17. 17.

    E. Zanon, A. Mancini, I.G. Pavanello, M. Bertolino, and M. Grosso: A review on thermal exfoliation of graphene oxide. J. Mater. Res. 95, 5343 (2013).

    Google Scholar 

  18. 18.

    S. You, S.M. Luzan, T. Szabó, and A.V. Talyzin: Effect of synthesis method on solvation and exfoliation of graphite oxide. Carbon 52, 171 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    CAS  Article  Google Scholar 

  20. 20.

    C.H.A. Wong, O. Jankovský, Z. Sofer, and M. Pumera: Vacuum-assisted microwave reduction/exfoliation of graphite oxide and the influence of precursor graphite oxide. Carbon 77, 508 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    K. Krishnamoorthy, M. Veerapandian, K. Yun, and S.J. Kima: The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    H. Wang, J.T. Robinson, G. Diankov, and H. Dai: Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 132, 3270 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    C. Botas, P. Álvarez, C. Blanco, R. Santamaría, M. Granda, P. Ares, F.R. Reinoso, and R. Menéndez: The effect of the parent graphite on the structure of graphene oxide. Carbon 50, 275 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    D.R. Chowdhury, C. Singh, and A. Paul: Role of graphite precursor and sodium nitrate in graphite oxide synthesis. RSC Adv. 4, 3777 (2014).

    Google Scholar 

  25. 25.

    D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    H. Wang and Y.H. Hu: Effect of oxygen content on structures of graphite oxides. Ind. Eng. Chem. Res. 50, 6132 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    W. Lee, S. Suzuki, and M. Miyayama: Lithium storage properties of graphene sheets derived from graphite oxides with different oxidation degree. Ceram. Int. 39, S753 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Y. Zhu, M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner, D. Chen, and R.S. Ruoff: Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4, 1227 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    L. Qiu, H. Zhang, W. Wang, Y. Chen, and R. Wang: Effects of hydrazine hydrate treatment on the performance of reduced graphene oxide film as counter electrode in dye-sensitized solar cells. Appl. Surf. Sci. 319, 339 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    D.W. Lee, L. De Los Santos V., J.W. Seo, L.L. Felix, A. Bustamante D.J.M. Cole, and C.H.W. Barnes: The structure of graphite Oxide: Investigation of its surface chemical groups. J. Phys. Chem. B 14, 5723 (2010).

    Article  Google Scholar 

  31. 31.

    H.K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M.H. Park, K.H. An, I.J. Kim, C.W. Yang, C.Y. Park, R.S. Ruoff, and Y.H. Lee: Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 130, 1362 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    D.W. Boukhvalov and M.I. Katsnelson: Modeling of graphite oxide. J. Am. Chem. Soc. 130, 10697 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    X. Wang and W. Dou: Preparation of graphite oxide (GO) and the thermal stability of silicone rubber/GO nanocomposites. Thermochim. Acta 529, 25 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff: Hydrazine-reduction of graphite and graphene oxide. Carbon 49, 3019 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, and R. Car: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    O. Akhavan, M. Kalaee, Z.S. Alavi, S.M.A. Ghiasi, and A. Esfandiar: Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 50, 3015 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    B. Yuan, C. Bao, X. Qian, P. Wen, W. Xing, L. Song, and Y. Hu: A facile approach to prepare graphene via solvothermal reduction of graphite oxide. Mater. Res. Bull. 55, 48 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    D. Yanga, A. Velamakannia, G. Bozoklub, S. Parka, M. Stollera, R.D. Pinera, S. Stankovichc, I. Junga, D.A. Fieldd, C.A. Ventrice, Jr, and R.S. Ruoff: Chemical analysis of graphene oxide films after heat and chemical treatments by x-ray photoelectron and Micro-Raman spectroscopy. Carbon 47, 145 (2009).

    Article  Google Scholar 

  39. 39.

    H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, and Y.H. Lee: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19, 1987 (2009).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1202272).We acknowledge operator Dan zhi Xu for their help in the measurement of Raman spectral. The BET detection work with the help of Yuanfeng Huan professor in Kunming Sino-Platinum Metals Co., Ltd.

Author information



Corresponding author

Correspondence to Zhengfu Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Zhang, Z., Liu, J. et al. Facile preparation of reduced graphene by optimizing oxidation condition and further reducing the exfoliated products. Journal of Materials Research 32, 383–391 (2017). https://doi.org/10.1557/jmr.2016.476

Download citation