Defects enhanced photocatalytic performances in SrTiO3 using laser-melting treatment

Abstract

SrTiO3 is an important photocatalyst for hydrogen evolution under solar light, a promising way to solve energy shortage. However, a rapid and efficient method to synthesize high-performance SrTiO3 used for this purpose still remains a challenge. In this work, we successfully prepared SrTiO3 catalyst with narrowed band gap through a rapid laser-melting method of a limited reaction time to seconds. The prepared SrTiO3 catalyst, which has a band gap of 3.05 eV, presents enhanced photocatalytic performance for hydrogen evolution under visible light. The evolution rate of laser-melted SrTiO3 is approximately 3.5 times higher than that of pristine SrTiO3. In addition, the magnetism in laser-melted SrTiO3 is also enhanced, which could not be observed in pristine SrTiO3, confirming the defective structure of the obtained laser-melted SrTiO3. The proposed laser-melting method will be a promising way to rapidly and efficiently synthesize homogeneous, solar-driven SrTiO3 photocatalyst for hydrogen evolution with rich defects and thus high-performance.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

References

  1. 1.

    X. Chen, S. Shen, L. Guo, and S.S. Mao: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    S.S. Rao, Y.F. Lee, J.T. Prater, A.I. Smirnov, and J. Narayan: Laser annealing induced ferromagnetism in SrTiO3 single crystal. Appl. Phys. Lett. 105, 042403 (2014).

    Article  CAS  Google Scholar 

  3. 3.

    L. Macaraig, S. Chuangchote, and T. Sagawa: Electrospun SrTiO3 nanofibers for photocatalytic hydrogen generation. J. Mater. Res. 29, 123 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    K.V. Benthem, C. Elsasser, and R.H. French: Bulk electronic structure of SrTiO3:SrTiO3: Experiment and theory. J. Appl. Phys. 90, 6156 (2001).

    Article  CAS  Google Scholar 

  5. 5.

    H.J. Queisser and E.E. Haller: Defects in semiconductors: Some fatal, some vital. Science 281, 945 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    Z.B. Jiao, T. Chen, J.Y. Xiong, T. Wang, G.X. Lu, J.H. Ye, and Y.P. Bi: Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays. Sci. Rep. 3, 2720 (2013).

    Article  Google Scholar 

  7. 7.

    G.L. Wu, P. Li, D.B. Xu, B.F. Luo, Y.Z. Hong, W.D. Shi, and C.B. Liu: Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3 nanocubes. Appl. Surf. Sci. 333, 39 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Y.L. Ham, T. Hisatomi, Y. Goto, Y. Moriya, Y. Sakata, A. Yamakata, J. Kubota, and K. Domen: Flux-mediated doping of SrTiO3 photocatalysts for efficient overall water splitting. J. Mater. Chem. A 4, 3027 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    T. Xian, H. Yang, L.J. Di, J.Y. Ma, H.M. Zhang, and J.F. Dai: Photocatalytic reduction synthesis of SrTiO3–graphene nanocomposites and their enhanced photocatalytic activity. Nanoscale Res. Lett. 9, 327 (2014).

    Article  CAS  Google Scholar 

  10. 10.

    M. Ribeiro: Quasiparticle theoretical characterization of electronic and optical properties of the photocatalytic material Ti3−δO4N. J. Mater. Res. 30, 2934 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Y. Sasaki, H. Nemoto, K. Saito, and A. Kudo: Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J. Phys. Chem. C 113, 17536 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Y.N. Liu, R.X. Wang, Z.K. Yang, H. Du, Y.F. Jiang, C.C. Shen, K. Liang, and A.W. Xu: Enhanced visible-light photocatalytic activity of Z-scheme graphitic carbon nitride/oxygen vacancy-rich zinc oxide hybrid photocatalysts. Chin. J. Catal. 36, 2135 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    H.C. Chen, C.W. Huang, J.C.S. Wu, and S.T. Lin: Theoretical investigation of the metal-doped SrTiO3 photocatalysts for water splitting. J. Phys. Chem. C 116, 7897 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    T.H. Xie, X.Y. Sun, and J. Lin: Enhanced photocatalytic degradation of RhB driven by visible light-induced MMCT of Ti(IV)–O–Fe(II) formed in Fe-doped SrTiO3. J. Phys. Chem. C 112, 9753 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    S. Kawasaki, K. Nakatsuji, J. Yoshinobu, F. Komori, R. Takahashi, M. Lippma, K. Mase, and A. Kudo: Epitaxial Rh-doped SrTiO3 thin film photocathode for water splitting under visible light irradiation. Appl. Phys. Lett. 101, 033910 (2012).

    Article  CAS  Google Scholar 

  16. 16.

    J. Yang, D. Wang, H. Han, and C. Li: Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    C. Ronning, C. Borschel, S. Geburt, and R. Niepelt: Ion beam doping of semiconductor nanowires. Mater. Sci. Eng., R 70, 30 (2010).

    Article  CAS  Google Scholar 

  18. 18.

    M. Venkatesan, C.B. Fitzgerald, and J.M.D. Coey: Thin films: Unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    I.R. Shein and A.L. Ivanovskii: First principle prediction of vacancy-induced magnetism in non-magnetic perovskite SrTiO3. Phys. Lett. A 371, 155 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    Z. Zhang, J. Hu, Z. Xu, H. Qin, L. Sun, F. Gao, Y. Zhang, and M. Jiang: Room-temperature ferromagnetism and ferroelectricity in nanocrystalline PbTiO3. Solid State Sci. 13, 1391 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    W.L. Warren, K. Vanheusden, D. Dimos, G.E. Pike, and B.A. Tuttle: Links between electrical and optical fatigue in Pb(Zr,Ti)O3 thin films. J. Am. Ceram. Soc. 79, 1714 (1996).

    CAS  Article  Google Scholar 

  22. 22.

    N.H. Hong, J. Sakai, and V. Brize: Observation of ferromagnetism at room temperature in ZnO thin films. J. Phys.: Condens. Matter 19, 036219 (2007).

    Google Scholar 

  23. 23.

    H.Q. Tan, Z. Zhao, W.B. Zhu, E.N. Coker, B.S. Li, M. Zheng, W.X. Yu, H.Y. Fan, and Z.C. Sun: Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3. ACS Appl. Mater. Interfaces 6, 19184 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    K. Xie, N. Umezawa, N. Zhang, P. Reunchan, Y.J. Zhang, and J.H. Ye: Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy Environ. Sci. 4, 4211 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    W. Yu, G. Ou, W.J. Si, L.H. Qi, and H. Wu: Defective SrTiO3 synthesized by arc-melting. Chem. Commun. 51, 15685 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    W.F. Xu, J. Yang, W. Bai, K. Tan, Y.Y. Zhang, and X.D. Tang: Oxygen vacancy induced photoluminescence and ferromagnetism in SrTiO3 thin films by molecular beam epitaxy. J. Appl. Phys. 114, 154106 (2013).

    Article  CAS  Google Scholar 

  27. 27.

    G. Wang, Y. Ling, and Y. Li: Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4, 6682 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Y. Lv, Y. Zhu, and Y. Zhu: Enhanced photocatalytic performance for the BiPO4−x nanorod induced by surface oxygen vacancy. J. Phys. Chem. C 117, 18520 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, and Y. Zhu: Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir 29, 3097 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    D.C. Cronemeyer: Infrared absorption of reduced rutile TiO2 single crystals. Phys. Rev. 113, 1222 (1959).

    CAS  Article  Google Scholar 

  31. 31.

    G. Ou, D. Li, W. Pan, Q. Zhang, B. Xu, L. Gu, C. Nan, and H. Wu: Arc-melting to narrow the bandgap of oxide semiconductors. Adv. Mater. 27, 2589 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    R. Molaei, M.R. Bayati, H.M. Alipour, S. Nori, and J. Narayan: Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment. J. Appl. Phys. 113, 233708 (2013).

    Article  CAS  Google Scholar 

  33. 33.

    S.G. Zhang, D.L. Guo, M.J. Wang, M.S. Javed, and C.G. Hu: Magnetism in SrTiO3 before and after UV irradiation. Appl. Surf. Sci. 335, 115 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    F.A. Rabuffetti, H.S. Kim, J.A. Enterkin, Y.M. Wang, C.H. Lanier, L.D. Marks, K.R. Poeppelmeier, and P.C. Stair: Synthesis-dependent first-order Raman scattering in SrTiO3 nanocubes at room temperature. Chem. Mater. 20, 5628 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    L.F. Silva, W. Avansi, Jr., J. Andre, C. Ribeiro, M.L. Moreira, E. Longo, and V.R. Mastelaro: Long-range and short-range structures of cube-like shape SrTiO3 powders: Microwave-assisted hydrothermal synthesis and photocatalytic activity. Phys. Chem. Chem. Phys. 15, 12386 (2013).

    Article  CAS  Google Scholar 

  36. 36.

    X.D. Jiang, Y.P. Zhang, J. Jiang, Y.S. Rong, Y.C. Wang, Y.C. Wu, and C.X. Pan: Characterization of oxygen vacancy associates within hydrogenated TiO2: A positron annihilation study. J. Phys. Chem. C 116, 22619 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    X. Chen and S.S. Mao: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    T. Sun and M. Lu: Band-structure modulation of SrTiO3 by hydrogenation for enhanced photoactivity. Appl. Phys. A: Mater. Sci. Process. 108, 171 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    C. Miot, E. Husson, C. Proust, R. Erre, and J.P. Coutures: Residual carbon evolution in BaTiO3 ceramics studied by XPS after ion etching. J. Eur. Ceram. Soc. 18, 339 (1998).

    CAS  Article  Google Scholar 

  40. 40.

    Y. Lv, W. Yao, X. Ma, C. Pan, R. Zong, and Y. Zhu: The surface oxygen vacancy induced visible activity and enhanced UV activity of a ZnO1−x photocatalyst. Catal. Sci. Technol. 3, 3136 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    S.A. Chambers, T. Droubay, T.C. Kaspar, M. Gutowski, and M. van Schilfgaarde: Accurate valence band maximum determination for SrTiO3 (001). Surf. Sci. 554, 81 (2004).

    CAS  Article  Google Scholar 

  42. 42.

    Y. Aiura, I. Hase, H. Bando, T. Yasue, T. Saitoh, and D.S. Dessau: Photoemission study of the metallic state of lightly electron-doped SrTiO3. Surf. Sci. 515, 61 (2002).

    CAS  Article  Google Scholar 

  43. 43.

    X. Li, J.G. Yu, J.X. Low, Y.P. Fang, J. Xiao, and X.B. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    J.Q. Wen, J. Xie, X.B. Chen, and X. Li: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2016).

    Article  CAS  Google Scholar 

  45. 45.

    J.W. Qian, Z.Y. Zhao, Z.G. Shen, G.L. Zhang, Z.J. Peng, and X.L. Fu: Oxide vacancies enhanced visible active photocatalytic W19O55 NMRs via strong adsorption. RSC Adv. 6, 8061 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    Y.J. Zhang, J.F. Hu, E. Cao, L. Sun, and H.W. Qin: Vacancy induced magnetism in SrTiO3. J. Magn. Magn. Mater. 324, 1770 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    J.S. Lee, Y.W. Xie, H.K. Sato, C. Bell, Y. Hikita, H.Y. Hwang, and C.C. Kao: Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface. Nat. Mater. 12, 703 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    F.L. Liu, X.J. Chen, Q.H. Xia, L.H. Tian, and X.B. Chen: Ultrathin tungsten oxide nanowires: Oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties. RSC Adv. 5, 77423 (2015).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors would like to thank the financial support for this work from the National Natural Science Foundation of China (grant no. 61274015).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Peng or Hui Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Wei, H., Peng, Z. et al. Defects enhanced photocatalytic performances in SrTiO3 using laser-melting treatment. Journal of Materials Research 32, 748–756 (2017). https://doi.org/10.1557/jmr.2016.461

Download citation