Effect of carbon nanotube content and double-pressing double-sintering method on the tensile strength and bending strength behavior of carbon nanotube-reinforced aluminum composites

Abstract

In this research work, planetary ball mill has been used to disperse carbon nanotubes (CNTs) in Al powders. Al-CNT nanocomposite samples have been produced using double pressing double sintering (DPDS) method. The effects of CNTs weight percent and secondary pressing and sintering on the hardness, tensile, and bending strength of Al-CNTs nanocomposites were investigated. Enhancements of about 98% in hardness, 40% in tensile strength, and 20% in bending strength of Al-CNTs nanocomposites were observed as compared with pure Al samples. Using DPDS technique increments of 2.4–16.14% in density has been obtained as compared with the nanocomposites produced by conventional sintering method. The composites were studied by scanning electron microscope and differential thermal analysis. The X-ray diffraction (XRD) was used to identify various phases if present in Al-CNTs nanocomposites.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

References

  1. 1.

    M. Rajabi: Characterization of Al–SiC composite materials produced by double pressing-double sintering method. Int. J. Eng. Sci. (IUST) 14 (2), 21–37 (2003).

    CAS  Google Scholar 

  2. 2.

    M. Rajabi, M.M. Khodai, N. Askari, B. Mirhadi, and H. Oveisi: Evaluation of time effect on mechanical properties of Al–ZrO2 nano-composites produced by microwave sintering. In Second Iran International Aluminum Conference, Arak, Iran, 2012; pp. 11–18.

    Google Scholar 

  3. 3.

    M.M. Khodai, M. Rajabi, N. Askari, B. Mirhadi, and H. Oveisi: Microwave sintering of aluminum-zirconia nano-composites. In 2nd International Advances in Applied Physics and Materials Science Congress, Antalya, 2012; pp. 125–132.

    Google Scholar 

  4. 4.

    M. Rajabi, M.M. Khodai, and N. Askari: Microwave-assisted sintering of Al–ZrO2 nano-composites. J. Mater. Sci.: Mater. Electron. 25, 4577–4584 (2014).

    CAS  Google Scholar 

  5. 5.

    M. Rajabi and M. Safaei: Synthesis of Al-SiC composite material by double–pressing double–sintering method. In 4th Annual Congress of Iranian Metallurgy Engineering Society, Tehran, Iran, 1999; pp. 995–1004.

    Google Scholar 

  6. 6.

    M. Rajabi and Z. Asadipanah: Production of Al–ZrB2 nano-composites by microwave sintering process. J. Mater. Sci.: Mater. Electron. 26, 6148–6156 (2015).

    Google Scholar 

  7. 7.

    T. Gladman, G. Foularis, and M. Talafi Noghani: Grain refinement of steel by oxidic second phase particles. Mater. Sci. Technol. 15, 1414–1424 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    S.R. Bakshi, D. Lahiri, and A. Agarwal: Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 55, 41–64 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    E.T. Thostenson, Z.F. Ren, and T.W. Chou: Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 1899–1912 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    P.M. Ajayan and O.Z. Zhou: Applications of carbon nano-tubes. Topics in Applied Physics 80, 391–425 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    M. Terrones: Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes. Mater. Res. 33, 419–501 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    W.A. Curtin and B.W. Sheldon: CNT-reinforced ceramics and metals. Mater. Today 7, 44–49 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    CAS  Article  Google Scholar 

  14. 14.

    V.N. Popov: Carbon nanotubes: Properties and application. Mater. Sci. Eng., R 43 (3), 61–102 (2004).

    Article  CAS  Google Scholar 

  15. 15.

    B. Boesl, D. Lahiri, S. Behdad, and A. Agarwal: Direct observation of carbon nano-tube induced strengthening in aluminum composite via in situ tensile tests. Carbon 69, 79–85 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    J. Gallego, J. Barrault, C. Batiot-Dupeyrat, and F. Mondragon: Inter-shell spacing changes in MWCNT induced by metal–CNT interactions. Micron 44, 463–467 (2012).

    Article  CAS  Google Scholar 

  17. 17.

    C.L. Xu, B.Q. Wei, R.Z. Ma, J. Liang, X.K. Ma, and D.H. Wu: Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon 37, 855–858 (1999).

    CAS  Article  Google Scholar 

  18. 18.

    R. Zhong, H. Cong, and P. Hou: Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes. Carbon 41, 848–851 (2002). (letters to the editor).

    Article  CAS  Google Scholar 

  19. 19.

    T. Kuzumaki, K. Miyazawa, and H. Ichinose: Processing of carbon nanotubes aluminum composite. Mater. Res. 13, 2445–2449 (1998).

    CAS  Article  Google Scholar 

  20. 20.

    R. Perez-Bustamante, I. Estrada-Guel, W. Antunez-Flores, M. Miki-Yoshida, P.J. Ferreira, and R. Martinez-Sanchez: Novel Al-matrix nano-composites reinforced with multi-walled carbon nanotubes. J. Alloys Compd. 450 (1–2), 323–326 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    A.M.K. Esawi and M.A. Borady: Carbon nanotube-reinforced aluminum strips. Compos. Sci. Technol. 68 (2), 486–492 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    C.F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li: Processing and properties of carbon nanotubes reinforced aluminum composites. Mater Sci. Eng., A 444 (1–2), 138–145 (2007).

    Article  CAS  Google Scholar 

  23. 23.

    R. George, K.T. Kashyap, R. Rahul, and S. Yamdagni: Strengthening in carbon nanotube/aluminum (CNT/Al) composites. Scr. Mater. 53, 1159–1163 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    A.M.K. Esawi and K. Morsi: Dispersion of carbon nanotubes (CNT) in aluminum powder. Composites, Part A 38 (2), 646–650 (2007).

    Article  CAS  Google Scholar 

  25. 25.

    A.M.K. Esawi and K. Morsi: Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders. J. Mater. Sci. 42, 4954–4959 (2007).

    Article  CAS  Google Scholar 

  26. 26.

    A.M.K. Esawi, K. Morsi, A. Sayed, A. Abdel Gawad, and P. Borah: Fabrication and properties of dispersed carbon nanotube–aluminum composites. Mater. Sci. Eng., A 508, 167–173 (2009).

    Article  CAS  Google Scholar 

  27. 27.

    H.J. Choi, G.B. Kwon, G.Y. Lee, D.H. Bae: Reinforcement with carbon nanotubes in aluminum matrix composites. Scr. Mater. 59, 360–363 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    A. Yarahmadi, M. Rajabi, M. Talafi Noghani, and R. Taghiabadi: Synthesis of aluminum-CNTs composites using double-pressing double-sintering method. J. Nano Structure (2016), accepted.

    Google Scholar 

  29. 29.

    T. Noguchi, A. Magario, S. Fukazawa, S. Shimizu, J. Beppu, and M. Seki: Carbon nanotube/aluminum composites with uniform dispersion. Mater. Trans. 45 (2), 602 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    Y. Zhou, W. Yang, Y. Xia, and P.K. Mallick: An experimental study on the tensile behavior of a unidirectional carbon fiber reinforced aluminum composite at different strain rates. Mater. Sci. Eng., A 362, 112–117 (2003).

    Article  CAS  Google Scholar 

  31. 31.

    X.X. Zhang, C.F. Deng, and D.Z. Wang: Damping characterization of carbon nanotubes/aluminium matrix composites. Mater. Lett. 61, 3229–3231 (2007).

    Article  CAS  Google Scholar 

  32. 32.

    A. Dias, R.L. Moreira, N.D.S. Mohallem, and A.I. Persiano: Microstructrual dependence of the magnetic properties of sintered NiZn ferrites from hydrothermal powders. J. Magn. Magn. Mater. 172, L9–L14 (1997).

    CAS  Article  Google Scholar 

  33. 33.

    S.I. Cha, K.T. Kim, S.N. Arshad, and S.H. Hong: Extraordinary strengthening effect of carbon nanotubes in metal-matrix nano-composites processed by molecular-level mixing. Adv. Mater. 17, 1377–1381 (2008).

    Article  CAS  Google Scholar 

  34. 34.

    L.Q. Viereckl, A. Rottmair, and R.F. Singer: Improved processing of carbon nanotube/magnesium alloy composites. Compos. Sci. Technol. 69, 1193–1199 (2009).

    Article  CAS  Google Scholar 

  35. 35.

    H. Li, A. Misra, Y. Zhu, Z. Horita, C.C. Koch, T.G. Holesingerd: Processing and characterization of nanostructured Cu-carbon nanotube composites. Mater. Sci. Eng., A 523, 60–64 (2009).

    Article  CAS  Google Scholar 

  36. 36.

    D. Lahiri, S.R. Bakshi, A.K. Keshri, Y. Liu, and A. Agarwal: Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites. Mater. Sci. Eng., A 523, 263–270 (2009).

    Article  CAS  Google Scholar 

  37. 37.

    K.T. Kim, S.I. Cha, T. Gemming, J. Eckert, and S.H. Hong: The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon nanotube-reinforced metal matrix nanocomposites. Small 4, 1936–1940 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    J.N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K.P. Ryan, C. Belton, A. Fonseca, J.B. Nagy, Y.K. Gunko, and W.J. Blau: High-performance nanotube reinforced plastics: Understanding the mechanism of strength increase. Adv. Funct. Mater. 14, 791–798 (2004).

    CAS  Article  Google Scholar 

  39. 39.

    T. Kuzumaki, K. Miyazawa, and H. Ichinose: Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res. 13, 2445–2449 (1998).

    CAS  Article  Google Scholar 

  40. 40.

    M. Raviathul Basariya, V.C. Srivastava, and N.K. Mukhopadhyay: Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Mater. Des. 61, 542 (2014).

    Article  CAS  Google Scholar 

  41. 41.

    G.D. Zhan, J.D. Kuntz, J. Wan, and A.K. Mukherjee: Single-wall carbon nanotubes as attractive toughening agents in alumina-based nano-composites. Nat. Mater. 2, 38–42 (2003).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors would like to acknowledge Ahmad Yarahmadi for his too much help during characterizations of samples, and Imam Khomeini International University labs for providing the research facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Yarahmadi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yarahmadi, A., Noghani, M.T. & Rajabi, M. Effect of carbon nanotube content and double-pressing double-sintering method on the tensile strength and bending strength behavior of carbon nanotube-reinforced aluminum composites. Journal of Materials Research 31, 3860–3868 (2016). https://doi.org/10.1557/jmr.2016.446

Download citation