Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy

Abstract

The microstructural evolution of a HfNbTaTiZr high-entropy alloy subjected to cold rolling and subsequent annealing was investigated. The dislocation activity dominates the deformation process. The microstuctural evolution of the alloy during cold rolling can be described as follows: (i) formation of dislocation tangles, (ii) formation of microbands, (iii) formation of thin laths and microshear bands containing thin laths, (iv) the transverse breakdown of the lath to elongated segment, and (v) formation of fine grains. During annealing at 800 and 1000 °C, decomposition of the metastable high-temperature body-centered cubic phase proceeded through a phase separation reaction. Annealing at 800 °C resulted in a nonrecrystallized microstructure with abundant second-phase particles distributed randomly. The second-phase particles with an average size of ∼145 nm were enriched in Ta and Nb, while the chemical composition of the matrix was close to the average composition of the alloy. Meanwhile, an unknown phase slightly enriched in Hf, Zr, and Ti was detected in the interfacial region between the second-phase particles.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6 (5), 299 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    B. Cantor, I. Chang, P. Knight, and A. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).

    Article  CAS  Google Scholar 

  3. 3.

    Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang: High-entropy alloy: Challenges and prospects. Mater. Today 19 (6), 349 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, and X.D. Hui: A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett. 130, 277 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345 (6201), 1153 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Z. Wu, H. Bei, G.M. Pharr, and E.P. George: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59 (16), 6308 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Z. Tang, L. Huang, W. He, and P. Liaw: Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys. Entropy 16 (2), 895 (2014).

    Article  CAS  Google Scholar 

  9. 9.

    Y.L. Chou, Y.C. Wang, J.W. Yeh, and H.C. Shih: Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros. Sci. 52 (10), 3481 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, and A.L. Zhang: Microstructure and oxidation behavior of new refractory high entropy alloys. J. Alloys Compd. 583, 162 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    M. Feuerbacher, M. Heidelmann, and C. Thomas: Hexagonal high-entropy alloys. Mater. Res. Lett. 3 (1), 1 (2014).

    Article  CAS  Google Scholar 

  12. 12.

    K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C.C. Koch: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3 (2), 95 (2014).

    Article  CAS  Google Scholar 

  13. 13.

    J.W. Yeh: Recent progress in high-entropy alloys. Ann. Chim.-Sci. Mat. 31 (6), 633 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    M.H. Tsai and J.W. Yeh: High-entropy alloys: A critical review. Mater. Res. Lett. 2 (3), 107 (2014).

    Article  CAS  Google Scholar 

  15. 15.

    M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang: High-Entropy Alloys: Fundamentals and Applications (Springer, Cham, 2015).

    Google Scholar 

  16. 16.

    M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk: High-entropy alloys in hexagonal close-packed structure. Metall. Mater. Trans. A 47 (7), 3322 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68 (7), 526 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    M.J. Yao, K.G. Pradeep, C.C. Tasan, and D. Raabe: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 72–73, 5 (2014).

    Article  CAS  Google Scholar 

  19. 19.

    Y. Zou, S. Maiti, W. Steurer, and R. Spolenak: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).

    Article  CAS  Google Scholar 

  21. 21.

    N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov, and G. Salishchev: Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 59, 8 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509 (20), 6043 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, and C.F. Woodward: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47 (9), 4062 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    O.N. Senkov and S.L. Semiatin: Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloys Compd. 649, 1110 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    S.J. Pennycook and P.D. Nellist: Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, New York, 2011).

    Google Scholar 

  26. 26.

    Z.J. Li, A. Godfrey, and Q. Liu: Evolution of microstructure and local crystallographic orientations in rolled Al–1% Mn single crystals of {001}〈110〉 orientation. Acta Mater. 52 (1), 149 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    J. Wert, Q. Liu, and N. Hansen: Dislocation boundary formation in a cold-rolled cube-oriented Al single crystal. Acta Mater. 45 (6), 2565 (1997).

    CAS  Article  Google Scholar 

  28. 28.

    D.K. Yang, P. Cizek, P.D. Hodgson, and C.E. Wen: Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium. Acta Mater. 58 (13), 4536 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109 (10), 103505 (2011).

    Article  CAS  Google Scholar 

  30. 30.

    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10 (6), 534 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    S. Guo and C.T. Liu: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21 (6), 433 (2011).

    Article  Google Scholar 

  32. 32.

    D. Hughes: Microstructural evolution in a non-cell forming metal: Al–Mg. Acta Metall. Mater. 41 (5), 1421 (1993).

    CAS  Article  Google Scholar 

  33. 33.

    D. Hughes and N. Hansen: Microstructural evolution in nickel during rolling and torsion. Mater. Sci. Technol. 7 (6), 544 (1991).

    CAS  Article  Google Scholar 

  34. 34.

    D. Hughes, N. Hansen, and D. Bammann: Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scr. Mater. 48 (2), 147 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    D. Kuhlmann-Wilsdorf and N. Hansen: Geometrically necessary, incidental and subgrain boundaries. Scr. Metall. Mater. 25 (7), 1557 (1991).

    CAS  Article  Google Scholar 

  36. 36.

    B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, and N. Hansen: Microstructural evolution of IF-steel during cold rolling. Acta Mater. 52 (4), 1069 (2004).

    CAS  Article  Google Scholar 

  37. 37.

    Q. Xue, E.K. Cerreta, and G.T.I. Gray: Microstructural characteristics of post-shear localization in cold-rolled 316L stainless steel. Acta Mater. 55 (2), 691 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, and J. Lu: Nanostructure formation mechanism of alpha-titanium using SMAT. Acta Mater. 52 (14), 4101 (2004).

    CAS  Article  Google Scholar 

  39. 39.

    Q. Xue and G.T.I. Gray: Development of adiabatic shear bands in annealed 316L stainless steel: Part II. TEM studies of the evolution of microstructure during deformation localization. Metall. Mater. Trans. A 37 (8), 2447 (2006).

    Article  Google Scholar 

  40. 40.

    C.R. Afonso, P.L. Ferrandini, A.J. Ramirez, and R. Caram: High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a β-Ti–35Nb–7Zr–5Ta alloy for implant applications. Acta Biomater. 6 (4), 1625 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    O. Senkov, S. Senkova, and C. Woodward: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214 (2014).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The financial supports from Fundamental Research Funds for the Central Universities of Central South University, Hunan Provincial National Natural Science Foundation of China (2015JJ2206), and Project of Innovation-driven Plan in Central South University (2015CXS003) are appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Min Song.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Ni, S., Liu, Y. et al. Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy. Journal of Materials Research 31, 3815–3823 (2016). https://doi.org/10.1557/jmr.2016.445

Download citation