Zn2SnO4 coated reduced graphene oxide nanoribbons with enhanced electrochemical performance for lithium-ion batteries


Graphene nanoribbons as a quasi-one-dimensional form of graphene has attracted intensive attention in energy related devices. Upon oxidation and cutting of multiwall carbon nanotubes (MWCNTs), highly dispersive graphene oxide nanoribbons (GONRs) were obtained, on which Zn2+ and Sn4+ can be homogenously deposited. The reduced graphene oxide nanoribbons (rGONRs)/Zn2SnO4 composite with a homogeneous distribution of nanoparticles on the nanoribbons have been prepared through facile in situ chemical co-reduction process. It is worth noting that the size of Zn2SnO4 particles tightly dispersed on rGONRs is about 15 nm. Benefit from the introduction of rGONRs, the specific surface area and electrode conductivity of rGONRs/Zn2SnO4 can both be effectively enhanced. The as-prepared rGONRs/Zn2SnO4 as anode material for lithium-ion batteries displays desirable electrochemical performance (727.2 mA h/g after 50 cycles at the current density of 100 mA/g), which is mainly attributed to the uniformly distributed Zn2SnO4 nanoparticles and the immobilizing and conducting effects of rGONRs.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    Q. Peng, Y. Li, X. He, X. Gui, Y. Shang, C. Wang, C. Wang, W. Zhao, S. Du, E. Shi, P. Li, D. Wu, and A. Cao: Graphene nanoribbon aerogels unzipped from carbon nanotube sponges. Adv. Mater. 26 (20), 3241 (2014).

    CAS  Google Scholar 

  2. 2.

    X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319 (5867), 1229 (2008).

    CAS  Google Scholar 

  3. 3.

    L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai: Narrow graphene nanoribbons from carbon nanotubes. Nature 458 (7240), 877 (2009).

    CAS  Google Scholar 

  4. 4.

    J. Lin, Z. Peng, C. Xiang, G. Ruan, Z. Yan, D. Natelson, and J.M. Tour: Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7 (7), 6001 (2013).

    CAS  Google Scholar 

  5. 5.

    O. Hod, V. Barone, J.E. Peralta, and G.E. Scuseria: Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 7 (8), 2295 (2007).

    CAS  Google Scholar 

  6. 6.

    B. Luo, S. Liu, and L. Zhi: Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 8 (5), 630 (2012).

    CAS  Google Scholar 

  7. 7.

    B. Genorio, W. Lu, A.M. Dimiev, Y. Zhu, A-R.O. Raji, B. Novosel, L.B. Alemany, and J.M. Tour: In situ intercalation replacement and selective functionalization of graphene nanoribbon stacks. ACS Nano 6 (5), 4231 (2012).

    CAS  Google Scholar 

  8. 8.

    J. Lin, A-R.O. Raji, K. Nan, Z. Peng, Z. Yan, E.L.G. Samuel, D. Natelson, and J.M. Tour: Iron oxide nanoparticle and graphene nanoribbon composite as an anode material for high-performance Li-ion batteries. Adv. Funct. Mater. 24 (14), 2044 (2014).

    CAS  Google Scholar 

  9. 9.

    Y. Yang, L. Li, H. Fei, Z. Peng, G. Ruan, and J.M. Tour: Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 6 (12), 9590 (2014).

    CAS  Google Scholar 

  10. 10.

    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, and J.M. Tour: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458 (7240), 872 (2009).

    CAS  Google Scholar 

  11. 11.

    A.L. Higginbotham, D.V. Kosynkin, A. Sinitskii, Z. Sun, and J.M. Tour: Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4 (4), 2059 (2010).

    CAS  Google Scholar 

  12. 12.

    T. Bhardwaj, A. Antic, B. Pavan, V. Barone, and B.D. Fahlman: Enhanced electrochemical lithium storage by graphene nanoribbons. J. Am. Chem. Soc. 132 (36), 12556 (2010).

    CAS  Google Scholar 

  13. 13.

    Q. Qu, S. Yang, and X. Feng: 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23 (46), 5574 (2011).

    CAS  Google Scholar 

  14. 14.

    W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80 (6), 1339 (1958).

    CAS  Google Scholar 

  15. 15.

    S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang: Graphene oxide−MnO2 nanocomposites for supercapacitors. ACS Nano 4 (5), 2822 (2010).

    CAS  Google Scholar 

  16. 16.

    H. Wang, H.S. Casalongue, Y. Liang, and H. Dai: Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132 (21), 7472 (2010).

    CAS  Google Scholar 

  17. 17.

    X.J. Zhu, L.M. Geng, F.Q. Zhang, Y.X. Liu, and L.B. Cheng: Synthesis and performance of Zn2SnO4 as anode materials for lithium ion batteries by hydrothermal method. J. Power Sources 189 (1), 828 (2009).

    CAS  Google Scholar 

  18. 18.

    K. Kim, A. Annamalai, S.H. Park, T.H. Kwon, M.W. Pyeon, and M-J. Lee: Preparation and electrochemical properties of surface-charge-modified Zn2SnO4 nanoparticles as anodes for lithium-ion batteries. Electrochim. Acta 76, 192 (2012).

    CAS  Google Scholar 

  19. 19.

    A. Rong, X.P. Gao, G.R. Li, T.Y. Yan, H.Y. Zhu, J.Q. Qu, and D.Y. Song: Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. J. Phys. Chem. B 110 (30), 14754 (2006).

    CAS  Google Scholar 

  20. 20.

    Y. Zhao, Y. Huang, W. Zhang, Q. Wang, K. Wang, M. Zong, and X. Sun: Botryoidalis hollow Zn2SnO4 boxes@graphene as anode materials for advanced lithium-ion batteries. RSC Adv. 3 (45), 23489 (2013).

    CAS  Google Scholar 

  21. 21.

    W. Song, J. Xie, W. Hu, S. Liu, G. Cao, T. Zhu, and X. Zhao: Facile synthesis of layered Zn2SnO4/graphene nanohybrid by a one-pot route and its application as high-performance anode for Li-ion batteries. J. Power Sources 229, 6 (2013).

    CAS  Google Scholar 

  22. 22.

    W.S. Yuan, Y.W. Tian, and G.Q. Liu: Synthesis and electrochemical properties of pure phase Zn2SnO4 and composite Zn2SnO4/C. J. Alloys Compd. 506 (2), 683 (2010).

    CAS  Google Scholar 

  23. 23.

    Y.R. Lim, C.S. Jung, H.S. Im, K. Park, J. Park, W.I. Cho, and E.H. Cha: Zn2GeO4 and Zn2SnO4 nanowires for high-capacity lithium- and sodium-ion batteries. J. Mater. Chem. A 4 (27), 10691 (2016).

    CAS  Google Scholar 

  24. 24.

    K. Wang, Y. Huang, Y. Shen, L. Xue, H. Huang, H. Wu, and Y. Wang: Graphene supported Zn2SnO4 nanoflowers with superior electrochemical performance as lithium-ion battery anode. Ceram. Int. 40 (9), 15183 (2014).

    CAS  Google Scholar 

  25. 25.

    H. Fan, Z. Liu, J. Yang, C. Wei, J. Zhang, L. Wu, and W. Zheng: Surfactant-free synthesis of Zn2SnO4 octahedron decorated with nanoplates and its application in rechargeable lithium ion batteries. RSC Adv. 4 (91), 49806 (2014).

    CAS  Google Scholar 

  26. 26.

    Y.J. Hong and Y.C. Kang: Formation of core–shell-structured Zn2SnO4-carbon microspheres with superior electrochemical properties by one-pot spray pyrolysis. Nanoscale 7 (2), 701 (2015).

    CAS  Google Scholar 

  27. 27.

    H.Y. Wang, B.Y. Wang, J.K. Meng, J.G. Wang, and Q.C. Jiang: One-step synthesis of Co-doped Zn2SnO4–graphene–carbon nanocomposites with improved lithium storage performances. J. Mater. Chem. A 3 (3), 1023 (2015).

    CAS  Google Scholar 

  28. 28.

    Y. Zhao, Y. Huang, X. Sun, H. Huang, K. Wang, M. Zong, and Q. Wang: Hollow Zn2SnO4 boxes wrapped with flexible graphene as anode materials for lithium batteries. Electrochim. Acta 120, 128 (2014).

    CAS  Google Scholar 

  29. 29.

    C. Yan, J. Yang, Q. Xie, Z. Lu, B. Liu, C. Xie, S. Wu, Y. Zhang, and Y. Guan: Novel nanoarchitectured Zn2SnO4 anchored on porous carbon as high performance anodes for lithium ion batteries. Mater. Lett. 138, 120 (2015).

    CAS  Google Scholar 

  30. 30.

    H. Wang, Y. Wang, Z. Hu, and X. Wang: Cutting and unzipping multiwalled carbon nanotubes into curved graphene nanosheets and their enhanced supercapacitor performance. ACS Appl. Mater. Interfaces 4 (12), 6827 (2012).

    CAS  Google Scholar 

  31. 31.

    H. Huang, Y. Huang, M. Wang, X. Chen, Y. Zhao, K. Wang, and H. Wu: Preparation of hollow Zn2SnO4 boxes@C/graphene ternary composites with a triple buffering structure and their electrochemical performance for lithium-ion batteries. Electrochim. Acta 147, 201 (2014).

    CAS  Google Scholar 

  32. 32.

    E. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, and I. Honma: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8 (8), 2277 (2008).

    CAS  Google Scholar 

  33. 33.

    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45 (7), 1558 (2007).

    CAS  Google Scholar 

  34. 34.

    C. Zhong, J. Wang, Z. Chen, and H. Liu: SnO2–graphene composite synthesized via an ultrafast and environmentally friendly microwave autoclave method and its use as a superior anode for lithium-ion batteries. J. Phys. Chem. C 115 (50), 25115 (2011).

    CAS  Google Scholar 

  35. 35.

    C. Wang, H. Li, J. Zhao, Y. Zhu, W.Z. Yuan, and Y. Zhang: Graphene nanoribbons as a novel support material for high performance fuel cell electrocatalysts. Int. J. Hydrogen Energy 38 (30), 13230 (2013).

    CAS  Google Scholar 

  36. 36.

    F. Han, W.C. Li, M.R. Li, and A.H. Lu: Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. J. Mater. Chem. 22 (19), 9645 (2012).

    CAS  Google Scholar 

  37. 37.

    B.Y. Wang, H.Y. Wang, Y.L. Ma, X.H. Zhao, W. Qi, and Q.C. Jiang: Facile synthesis of fine Zn2SnO4 nanoparticles/graphene composites with superior lithium storage performance. J. Power Sources 281, 341 (2015).

    CAS  Google Scholar 

  38. 38.

    K. Wang, Y. Huang, T. Han, Y. Zhao, H. Huang, and L. Xue: Facile synthesis and performance of polypyrrole-coated hollow Zn2SnO4 boxes as anode materials for lithium-ion batteries. Ceram. Int. 40 (1), 2359 (2014).

    CAS  Google Scholar 

  39. 39.

    Y. Zhao, Y. Huang, Q. Wang, K. Wang, M. Zong, L. Wang, W. Zhang, and X. Sun: Preparation of hollow Zn2SnO4 boxes for advanced lithium-ion batteries. RSC Adv. 3 (34), 14480 (2013).

    CAS  Google Scholar 

  40. 40.

    S. Yuvaraj, W.J. Lee, C.W. Lee, and R.K. Selvan: In situ and ex situ carbon coated Zn2SnO4 nanoparticles as promising negative electrodes for Li-ion batteries. RSC Adv. 5 (82), 67210 (2015).

    CAS  Google Scholar 

  41. 41.

    W. Song, J. Xie, S. Liu, G. Cao, T. Zhu, and X. Zhao: Graphene-induced confined crystal growth of octahedral Zn2SnO4 and its improved Li-storage properties. J. Mater. Res. 27 (24), 3096 (2012).

    CAS  Google Scholar 

  42. 42.

    X. Ji, X. Huang, Q. Zhao, A. Wang, and X. Liu: Facile synthesis of carbon-coated Zn2SnO4 nanomaterials as anode materials for lithium-ion batteries. J. Mater. Res. 2014, 1 (2014).

    Google Scholar 

  43. 43.

    A.K. Rai, J. Gim, L.T. Anh, and J. Kim: Partially reduced Co3O4/graphene nanocomposite as an anode material for secondary lithium ion battery. Electrochim. Acta 100, 63 (2013).

    CAS  Google Scholar 

  44. 44.

    T. Jiang, X. Tian, H. Gu, H. Zhu, and Y. Zhou: Zn2SnO4@C core–shell nanorods with enhanced anodic performance for lithium-ion batteries. J. Alloys Compd. 639, 239 (2015).

    CAS  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (No. 51272075, No. 51372080 and No. 51238002). This work was also financially supported by the China Scholarship Council.

Author information



Corresponding author

Correspondence to Zhaohui Hou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jing, M., Hou, Z., Yang, H. et al. Zn2SnO4 coated reduced graphene oxide nanoribbons with enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Research 31, 3666–3674 (2016). https://doi.org/10.1557/jmr.2016.431

Download citation