Analysis on fracture initiation and fracture angle in ductile sheet metal under uniaxial tension by experiments and finite element simulations

Abstract

The instability and fracture process during uniaxial tension was observed from load-stop tensile tests and finite element simulation. The results indicate that at the end of instability, the direction of the maximum principle stress near the necking groove turns to being perpendicular to the groove. This tensile stress is critical to the growth of fracture. The fracture initiates from the internal of the sheet at the center of volume where the two local necking grooves intersect. Material here is under triaxial tensile stress state and the principle stresses in all three directions are the largest. Once the initial crack occurs, it propagates along the zero-strain-rate necking groove. Moreover, the final fracture angle between the fracture plane and the tensile axis is always larger than theoretical value. An important reason is the ignorance of the triaxial stress state evolution during instability in theoretical calculation.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

References

  1. 1.

    H. Vegter, H. Mulder, P.V. Liempt, and J. Heijne: Work hardening descriptions in simulation of sheet metal forming tailored to material type and processing. Int. J. Plast. 80, 204 (2016).

    Article  Google Scholar 

  2. 2.

    P.S. Ghangrekar, R. Banjare, B.C. Rao, and H. Murthy: Tensile testing of Al6061-T6 microspecimens with ultrafine grained structure derived from machining-based SPD process. J. Mater. Res. 29 (11), 1278 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    K. Chung, H. Kim, and C. Lee: Forming limit criterion for ductile anisotropic sheets as a material property and its deformation path insensitivity. Part I: Deformation path insensitive formula based on theoretical models. Int. J. Plast. 58, 3 (2014).

    Article  Google Scholar 

  4. 4.

    R. Beygi and M. Kazeminezhad: Tearing energy of an annealed bilayer sheet through multiple and single tensile tests. Mater. Sci. Eng., A 528, 8800 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    H. Takuda, H. Matsusaka, S. Kikuchi, and K. Kubota: Tensile properties of a few Mg–Li–Zn alloy thin sheets. J. Mater. Sci. 37, 51 (2001).

    Article  Google Scholar 

  6. 6.

    D. Josell, D.V. Heerden, D. Read, and J.B.D. Shechtman: Tensile testing low density multilayers: Aluminum/titanium. J. Mater. Res. 13 (10), 2902 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    M. Tane, R. Okamoto, and H. Nakajima: Tensile deformation of anisotropic porous copper with directional pores. J. Mater. Res. 25 (25), 1975 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    A. Ramazani, M. Abbasi, U. Prahl, and W. Bleck: Failure analysis of DP600 steel during the cross-die test. Comput. Mater. Sci. 64, 101 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    M. Considère: Memoir on the use of iron and steel in structures. Ann. Ponts Chaussees 9, 574 (1885).

    Google Scholar 

  10. 10.

    H.W. Swift: Plastic instability under plane stress. J. Mech. Phys. Solids 1, 1 (1952).

    Article  Google Scholar 

  11. 11.

    R. Hill: On discontinuous plastic states, with special reference to localized necking in thin sheets. J. Mech. Phys. Solids 1, 19 (1952).

    Article  Google Scholar 

  12. 12.

    R. Hill: A new method for determining the yield criterion and plastic potential of ductile metals. J. Mech. Phys. Solids 1, 271 (1953).

    Article  Google Scholar 

  13. 13.

    R. Hill: Constitutive modelling of orthotropic plasticity in sheet metals. J. Mech. Phys. Solids 38, 405 (1990).

    Article  Google Scholar 

  14. 14.

    R. Hill: A theoretical perspective on in-plane forming of sheet metal. J. Mech. Phys. Solids 39, 295 (1991).

    Article  Google Scholar 

  15. 15.

    R. Hill: The mathematical theory of plasticity. The Oxford Engineering Science Series, 1st ed. (Oxford University Press, New York, 1950).

    Google Scholar 

  16. 16.

    R. Hill: On the mechanics of localized necking in anisotropic sheet metals. J. Mech. Phys. Solids 49, 2055 (2001).

    Article  Google Scholar 

  17. 17.

    A.P. Karafillis, M.C. Ostrowski, W.T. Carter, and M.E. Graham: Method and apparatus for designing a manufacturing process for sheet metal parts. US, US 6353768 B1, 2002.

  18. 18.

    V. Tvergaard: Necking in tensile bars with rectangular cross-section. Comput. Method Appl. M 103, 273 (1993).

    Article  Google Scholar 

  19. 19.

    Z. Marciniak and K. Kuczyński: Limit strains in the processes of stretch-forming sheet metal. Int. J. Mech. Sci. 9, 609 (1967).

    Article  Google Scholar 

  20. 20.

    Y. Ling: Uniaxial true stress-strain after necking. AMP J. Technol., 5, 37 (1996).

    Google Scholar 

  21. 21.

    F. Abbassi, M. Nasri, R. Brault, S. Mistou, and A. Zghal: An experimental and numerical study of necking initiation in biaxial tensile test. Presented at the Icem15: 15th International Conference on Experimental Mechanics, 2012.

    Google Scholar 

  22. 22.

    A. Nasser, A. Yadav, P. Pathak, and T. Altan: Determination of the flow stress of five AHSS sheet materials (DP 600, DP 780, DP 780-CR, DP 780-HY and TRIP 780) using the uniaxial tensile and the biaxial Viscous Pressure Bulge (VPB) tests. J. Mater. Process. Technol. 210, 429 (2012).

    Article  Google Scholar 

  23. 23.

    G. Mandal, S.K. Ghosh, and S. Mukherjee: Phase transformation and mechanical behaviour of thermo-mechanically controlled processed high-strength multiphase steel. J. Mater. Sci. 51, 6569 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    W. Everhart, E. Sawyer, T. Neidt, J. Dinardo, and B. Brown: The effect of surface finish on tensile behavior of additively manufactured tensile bars. J. Mater. Sci. 51, 3836 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    K. Komori: Simulation of tensile test by node separation method. J. Mater. Process. Technol. 125, 608 (2002).

    Article  Google Scholar 

  26. 26.

    S. Shahbeyk, D. Rahiminejad, and N. Petrinic: Local solution of the stress and strain fields in the necking section of cylindrical bars under uniaxial tension. Eur. J. Mech. A-Solid 29, 230 (2010).

    Article  Google Scholar 

  27. 27.

    J.S. Chen, D.X.E., and J.W. Zhang: Research on crack propagation in the crack process of 1Cr18Ni9Ti tube under uniaxial tension. Acta Armamentarii 34, 865 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    E. Cabezas and D. Celentano: Experimental and numerical analysis of the tensile test using sheet specimens. Finite Elem. Anal. Des. 40, 555 (2004).

    Article  Google Scholar 

  29. 29.

    M. Joun, I. Choi, J. Eom, and M. Lee: Finite element analysis of tensile testing with emphasis on necking. Comput. Mater. Sci. 41, 63 (2007).

    Article  Google Scholar 

  30. 30.

    A. Nádai: Theory of Flow and Fracture of Solids, 1st ed. (McGraw HiliBook Co. Inc., New York, 1950).

    Google Scholar 

  31. 31.

    C. Brooks and A. Choudhury: Failure Analysis of Engineering Materials, 1st ed. (McGraw-Hill Education, New York, 2002).

    Google Scholar 

  32. 32.

    ABAQUS: ABAQUS 6.11 Analysis User’s Manual. Online Documentation Help: Dassault Systèmes (2011).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Daxin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Daxin, E. & Yi, N. Analysis on fracture initiation and fracture angle in ductile sheet metal under uniaxial tension by experiments and finite element simulations. Journal of Materials Research 31, 3991–3999 (2016). https://doi.org/10.1557/jmr.2016.412

Download citation