Tribological properties of lead-free Cu–FeS composites under dry sliding condition

Abstract

Cu–FeS composites without lead were prepared by power metallurgy process. The friction and wear properties were examined on a “block-on-ring” testing machine under dry sliding conditions with and without oil immersion. Results showed that both the frictional coefficient and the wear volumes decreased with increased FeS content in the composite under dry sliding conditions. In the condition of dry friction without oil immersion, the FeS solid lubricating film formed and played a role of antifriction and adhesion resistance. Under the dry friction condition with oil immersion, the lubricant oil stored in the porous FeS layer precipitated to the surface to form the oil film, which could work together to achieve a liquid–solid synergistic lubrication with the FeS transfer film. The lubrication performance of the collaborative lubrication reaction is better than that of the solid transfer film. With the increase of FeS, the collaborative lubrication became more obvious.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

References

  1. 1.

    T. Tanaka, I. Naka, T. Abe, A. Ono, H. Iwata, and H. Sugimura: Studies on lead-free resin overlay for engine bearings. SAE Int. 1, 1104 (2006).

    Google Scholar 

  2. 2.

    P.K. Rohatgi, D. Nath, and J.K. Kim: Corrosion and dealloying of cast lead-free copper alloy–graphite composites. Corros. Sci. 42(9), 1553 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    T. Kawachi, S. Takayanagi, H. Asakura, and H. Ishikawa: Development of lead free overlay for three layer bearings of highly loaded engines. SAE Int. 1, 1863 (2005).

    Google Scholar 

  4. 4.

    M. Kestursatya, J.K. Kim, and P.K. Rohatgi: Friction and wear behavior of a centrifugally cast lead-free copper alloy containing graphite particles. Metall. Mater. Trans. A 32(8), 2115 (2001).

    Article  Google Scholar 

  5. 5.

    D.M. Saxton: Lead-free replacements for SAE 792 in bushing applications. SAE Int. 1, 1097 (2006).

    Google Scholar 

  6. 6.

    K. Zushi, K. Sakai, and H. Sugawara: Development of lead free copper based alloy for piston pin bushing under higher load engines. SAE Int. 1, 1105 (2006).

    Google Scholar 

  7. 7.

    A. Fathy, F. Shehata, M. Abdelhameed, and M. Elmahdy: Compressive and wear resistance of nanometric alumina reinforced copper matrix composites. Mater. Des. 36, 100 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Yanguo, J. Xiangnan, and S. Chizheng: Research on the mechanics of copper-bismuth bearing material and tribology performance. Sci. J. Mater. Sci. 21(7), 322 (2012).

    Google Scholar 

  9. 9.

    C.B. Lin, Z.C. Chang, and Y.H. Tung: Manufacturing and tribological properties of copper matrix/carbon nanotubes composites. Wear 270(5), 382 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    M.N. Gardos: The synergistic effects of graphite on the friction and wear of MoS2 films in air. Tribol. Trans. 31(2), 214 (1988).

    CAS  Article  Google Scholar 

  11. 11.

    H. Sueyoshi, Y. Yamano, K. Inoue, Y. Maeda, and K. Yamada: Mechanical properties of copper sulfide-dispersed lead-free bronze. Mater. Trans. 50(4), 776 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    H. Sueyoshi, K. Inoue, Y. Yamano, Y. Maeda, and K. Yamada: Machinability of copper sulfide-dispersed lead-free bronze. Mater. Trans. 50(4), 847 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    H. Kato, M. Takama, Y. Iwai, K. Washida, and Y. Sasaki: Wear and mechanical properties of sintered copper–tin composites containing graphite or molybdenum disulfide. Wear 255(1–6), 573 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    T. Sato, Y. Hirai, T. Fukui, K. Tanizawa, and H. Usami: Tribological properties of porous cu based alloy containing nano sized sulfide particles. J. Adv. Mech. Des. Syst. 6(1), 158 (2012).

    Article  Google Scholar 

  15. 15.

    T. Sato, Y. Hirai, and T. Maruyama: Sintering and tribological properties of lead-free bronze alloy for friction materials. Powder Metall. 54(1), 10–12 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    H.D. Wang, B.S. Xu, and J.J. Liu: Characterization and tribological properties of plasma sprayed FeS solid lubrication coatings. Mater. Charact. 55(1), 43 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    H. Wang, B.S. Xu, and J.J. Liu: Investigation on friction and wear behaviors of FeS films on L6 steel surface. Appl. Surf. Sci. 252(4), 1084 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    J. Kang, C. Wang, and H. Wang: Characterization and tribological properties of composite 3Cr13/FeS layer. Surf. Coat. Technol. 203(14), 1927 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    J.J. Kang, C.B. Wang, H.D. Wang, B.S. Xu, J.J. Liu, and G.L. Li: Research on the tribological property of synthetic multilayer MoS2/FeS film under dry condition. Adv. Mater. Res. 217(21), 1117 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are very grateful for the support of the Natural Science Foundation of China (No. 51575151, No. 50975072), the Anhui Key Scientific and Technological Projects (No. 1501021006).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanguo Yin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yin, Y. & Li, J. Tribological properties of lead-free Cu–FeS composites under dry sliding condition. Journal of Materials Research 32, 354–362 (2017). https://doi.org/10.1557/jmr.2016.404

Download citation