Skip to main content
Log in

Synthesis and luminescence of Sr2Ta2O7:Pr3+: a novel blue emission, long persistent phosphor

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, a novel afterglow phosphor based on praseodymium ion doped Sr2Ta2O7 was synthesized successfully by solid-state reaction in the ambient atmosphere. The photoluminescence, afterglow, afterglow decay, and thermoluminescence (TL) properties were investigated in detail. The dependence of photoluminescence properties and long afterglow (LAG) performances on Pr3+ contents were investigated systematically. The optimal concentrations of Pr3+ ions for the best photoluminescence and LAG properties were experimentally to be 2 mol% and 0.5 mol%, respectively. Pr3+ exhibits prominent red emission in most reports, which derives from the 1D23H4 transition. However, the predominant blue emission locating at ∼489 and ∼507 nm coming from 3P0,13H4 transitions were observed in praseodymium ion-doped Sr2Ta2O7. Based on TL measurements, the trapping and de-trapping processes of charge carriers between shallower and deep traps were illustrated. A model was proposed on the basis of experimental results to explain the mechanisms of photoluminescence and LAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. A. Bessière, S.K. Sharma, N. Basavaraju, K.R. Priolkar, L. Binet, B. Viana, A.J.J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier: Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate. Chem. Mater. 26, 1365 (2014).

    Article  Google Scholar 

  2. L. Jin, H. Zhang, R. Pan, R. Pan, P. Xu, J. Han, X. Zhang, Q. Yuan, Z. Zhang, X. Wang, Y. Wang, and B. Song: Observation of the long afterglow in AlN helices. Nano Lett. 15, 6575 (2015).

    Article  CAS  Google Scholar 

  3. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama: A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+. J. Electrochem. Soc. 143, 2670 (1996).

    Article  CAS  Google Scholar 

  4. F.Q. Sun, R.R. Xie, L. Guan, and C.Y. Zhang: The near-infrared long-persistent phosphorescence of Cr3+-activated non-gallate phosphor. Mater. Lett. 164, 39 (2016).

    Article  CAS  Google Scholar 

  5. R.L. Nyenge, H.C. Swart, D. Poelman, P.F. Smetc, L.I.D.J. Martinc, L.L. Notoa, S. Som, and O.M. Ntwaeaborwaa: Thermal quenching, cathodoluminescence and thermoluminescence study of Eu2+ doped CaS powder. J. Alloys Compd. 657, 787 (2016).

    Article  CAS  Google Scholar 

  6. B. Liu, C. Shi, M. Yin, L. Dong, and Z.G. Xia: The trap states in the Sr2MgSi2O7 and (Sr, Ca)2MgSi2O7 long afterglow phosphor activated by Eu2+ and Dy3+. J. Alloys Compd. 387, 65 (2005).

    Article  CAS  Google Scholar 

  7. J. Hölsä: Persistent luminescence beats the afterglow: 400 years of persistent luminescence. Electrochem. Soc. Interface 18, 42 (2009).

    Article  Google Scholar 

  8. Z. Pan, Y.Y. Lu, and F. Liu: Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11, 58 (2012).

    Article  CAS  Google Scholar 

  9. M. Allix, S. Chenu, E. Véron, E. Véron, T. Poumeyrol, E.A. Kouadri-Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon: Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4. Chem. Mater. 25, 1600 (2013).

    Article  CAS  Google Scholar 

  10. Z. Fu, S. Zhou, and S. Zhang: Study on optical properties of rare-earth ions in nanocrystalline monoclinic SrAl2O4:Ln (Ln = Ce3+, Pr3+, Tb3+). J. Phys. Chem. B 109, 14396 (2005).

    Article  CAS  Google Scholar 

  11. Z.L. Hong, P.Y. Zhang, X.P. Fan, and Q.M. Wang: Eu3+ red long afterglow in Y2O2S:Ti, Eu phosphor through afterglow energy transfer. J. Lumin. 124, 127 (2007).

    Article  CAS  Google Scholar 

  12. E.G. Yukihara and S.W.S. McKeever: Optically stimulated luminescence: Fundamentals and applications, 1st ed. (John Wiley & Sons, Hoboken, 2011).

    Book  Google Scholar 

  13. Z.M. Qi, C.S. Shi, M. Liu, D.F. Zhou, X.X. Luo, J. Zhang, and Y.N. Xie: The valence of rare earth ions in R2MgSi2O7:Eu2+,Dy3+ (R = Ca, Sr) long-afterglow phosphors. Phys. Status Solidi A 201, 3109 (2004).

    Article  CAS  Google Scholar 

  14. X.M. Zhang, H. Chen, W.J. Ding, H. Wu, and J. Kim: Ca2B5O9Cl:Eu2+, a suitable blue-emitting phosphor for n-UV excited solid-state lighting. J. Am. Ceram. Soc. 92, 429 (2009).

    Article  CAS  Google Scholar 

  15. F.W. Kang, Y. Zhang, L. Wondraczek, J.Q. Zhu, X.B. Yang, and M.Y. Peng: Processing-dependence and the nature of the blue-shift of Bi3+-related photoemission in ScVO4 at elevated temperatures. J. Mater. Chem. C 2, 9850 (2014).

    Article  CAS  Google Scholar 

  16. F.W. Kang, X.B. Yang, M.Y. Peng, L. Wondraczek, Z.J. Ma, Q.Y. Zhang, J.R. Qiu: Red photoluminescence from Bi3+ and the influence of the oxygen-vacancy perturbation in ScVO4: A combined experimental and theoretical study. J. Phys. Chem. C 118, 7517 (2014).

    Google Scholar 

  17. L. Zhang and Y. Zhu: A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts. Catal. Sci. Technol. 2, 694 (2012).

    Article  CAS  Google Scholar 

  18. Y.G. Su, L.M. Peng, J.W. Guo, S.S. Huang, L. Lv, and X.J. Wang: Tunable optical and photocatalytic performance promoted by nonstoichiometric control and site-selective codoping of trivalent ions in NaTaO3. J. Phys. Chem. C 118, 10728 (2014).

    Article  CAS  Google Scholar 

  19. L.L. Noto, M.Y.A. Yagoub, O.M. Ntwaeaborwa, and H.C. Swart: Persistent photoluminescence emission from SrTa2O6:Pr3+ phosphor prepared at different temperatures. Ceram. Int. 41, 8828 (2015).

    Article  CAS  Google Scholar 

  20. P. Liu, J. Nisar, R. Ahuja, and B. Pathak: Layered perovskite Sr2Ta2O7 for visible light photocatalysis: A first principles study. J. Phys. Chem. C 117, 5043 (2013).

    Article  CAS  Google Scholar 

  21. A. Mukherji, B. Seger, G.Q. Lu, et al.: Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. ACS Nano 5, 3483 (2011).

    Article  CAS  Google Scholar 

  22. N. Ishizawa, F. Marumo, T. Kawamura, and M. Kimura: Compounds with perovskite-type slabs. II. The crystal structure of Sr2Ta2O7. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 32, 2564 (1976).

    Article  Google Scholar 

  23. N. Ishizawa, F. Marumo, and S. Iwai: Compounds with perovskite-type slabs. IV. Ferroelectric phase transitions in Sr2(Ta1−xNbx)2O7 (x ≃ 0.12) and Sr2Ta2O7. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 37, 28 (1981).

    Article  Google Scholar 

  24. L.L. Noto, M.L. Chithambo, O.M. Ntwaeaborwa, and H.C. Swart: The greenish-blue emission and thermoluminescent properties of CaTa2O6:Pr3+. J. Alloys Compd. 589, 91 (2014).

    Article  Google Scholar 

  25. G. Blasse: Energy transfer in oxidic phosphors. Phys. Lett. A 28, 444 (1968).

    Article  CAS  Google Scholar 

  26. D.L. Dexter and J.H. Schulman: Theory of concentration quenching in inorganic phosphor. J. Chem. Phys. 22, 1063 (1954).

    Article  CAS  Google Scholar 

  27. L. Ozawa and P.M. Jaffe: The mechanism of the emission color shift with activator concentration in +3 activated phosphors. J. Electrochem. Soc. 118, 1679 (1971).

    Google Scholar 

  28. G.B. Che, C.B. Liu, X.Y. Li, Z.L. Xu, Y. Liu, and H. Wang: Luminescence properties of a new Mn2+-activated red long-afterglow phosphor. J. Phys. Chem. Solids. 69, 2091 (2008).

    Article  CAS  Google Scholar 

  29. H.J. Guo, Y.H. Wang, W.B. Chen, W. Zeng, S.C. Han, G. Li, and Y.Y. Li: Controlling and revealing the trap distributions of Ca6BaP4O17:Eu2+,R3+ (R = Dy, Tb, Ce, Gd, Nd) by codoping different trivalent lanthanides. J. Mater. Chem. C 3, 11216 (2015).

    Google Scholar 

  30. J. Trojan-Piegza, J. Niittykoski, J. Hölsä, and E. Zych: Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+, Ca2+-codoped Lu2O3 materials. Chem. Mater. 20, 2258 (2008).

    Article  Google Scholar 

  31. X. Sun, J. Zhang, X. Zhang, Y. Luo, and X.J. Wang: Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+ and Sr3SiO5:Eu2+,Dy3+ phosphors. J. Phys. D: Appl. Phys. 41, 195414 (2008).

    Article  Google Scholar 

  32. R. Chen: On the calculation of activation energies and frequency factors from glow curves. J. Appl. Phys. 40, 580 (1969).

    Google Scholar 

  33. R. Chen: Glow curves with general order kinetics. J. Electrochem. Soc. 116, 1254 (1969).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 21471038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihua Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, F., Hu, Y., Chen, L. et al. Synthesis and luminescence of Sr2Ta2O7:Pr3+: a novel blue emission, long persistent phosphor. Journal of Materials Research 31, 3704–3711 (2016). https://doi.org/10.1557/jmr.2016.401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.401

Navigation