Microstructural evolution of TiC/near-α Ti composite during high-temperature tensile test


In the present paper, 10 vol%TiC/Ti–6Al–3Sn–3.5Zr–0.4Mo–0.75Nb–0.35Si composite produced via in situ casting technique was tested in the temperature range from room temperature to 900 °C and much attention was paid on the microstructural evolution during high-temperature tensile test. It was found that the variation of microstructures in deformation zones with strain exhibited different trends at different temperatures. Below 600 °C, dislocation density increased with strain over the entire strain range. As temperature increased to 700 °C, dislocations proliferated rapidly in the initial deformation and then dislocation annihilated through dynamic recovery. Above 800 °C, the variation of microstructures in deformation zones with strain was similar to that at 700 °C at the beginning but at higher strain, dynamic recrystallization (DRX) occurred, leading to the formation of equiaxed microstructure. Microstructural evolution in deformation zones corresponded to the variation of tensile stress–strain characteristics with temperature, reflecting the hardening or softening feature of matrix. Dynamic recovery ascribed to the flow softening of the composite at 700 °C, while flow softening is owing to dynamic recovery and DRX above 800 °C. In addition, matrix softening should show different trends in different temperature ranges.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    R. Harichandran and N. Selvakumar: Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process. Arch. Civ. Mech. Eng. 16, 147 (2016).

    Article  Google Scholar 

  2. 2.

    H.L. Zhang, J.H. Wu, Y. Zhang, J.W. Li, and X.T. Wang: Effect of metal matrix alloying on mechanical strength of diamond particle-reinforced aluminum composites. J. Mater. Eng. Perform. 24, 2556 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    G.Q. Wu, Q.Q. Zhang, X. Yang, Z. Huang, and W. Sha: Effects of particle/matrix interface and strengthening mechanisms on the mechanical properties of metal matrix composites. Compos. Interfaces 21, 415 (2014).

    Article  Google Scholar 

  4. 4.

    H. Abdizadeh and M.A. Baghchesara: Investigation into the mechanical properties and fracture behavior of A356 aluminum alloy-based ZrO2-particle-reinforced metal-matrix composites. Mech. Compos. Mater. 49, 571 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    J.Q. Qi, Y. Chang, Y.Z. He, Y.W. Sui, F.X. Wei, Q.K. Meng, and Z.J. Wei: Effect of Zr, Mo and TiC on microstructure and high-temperature tensile strength of cast titanium matrix composites. Mater. Des. 99, 421 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    C.J. Zhang, S.Z. Zhang, P. Lin, Z.P. Hou, F.T. Kong, and Y.Y. Chen: Thermomechanical processing of (TiB + TiC)/Ti matrix composites and effects on microstructure and tensile properties. J. Mater. Res. 41, 1244 (2016).

    Article  CAS  Google Scholar 

  7. 7.

    M. Zadra and L. Girardini: High-performance, low-cost titanium metal matrix composites. Mater. Sci. Eng., A 608, 155 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    X.L. Guo, W.J. Lu, L.Q. Wang, and J.N. Qin: A research on the creep properties of titanium matrix composites rolled with different deformation degrees. Mater. Des. 63, 50 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    M. Selva Kumar, P. Chandrasekar, P. Chandramohan, and M. Mohanraj: Characterisation of titanium–titanium boride composites processed by powder metallurgy techniques. Mater. Charact. 73, 43 (2012).

    Article  CAS  Google Scholar 

  10. 10.

    J.Q. Lu, J.N. Qin, W.J. Lu, Y. Liu, J.J. Gu, and D. Zhang: In situ preparation of (TiB + TiC + Nd2O3)/Ti composites by powder metallurgy. J. Alloys Compd. 469, 116 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    J.Q. Qi, Y.W. Sui, Y. Chang, Y.Z. He, F.X. Wei, Q.K. Meng, and Z.J. Wei: Superior ductility in as-cast TiC/near-α Ti composite obtained by three-step heat treatment. Vacuum 126, 1–4 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    J.Q. Qi, Y.W. Sui, Y. Chang, Y.Z. He, F.X. Wei, Q.K. Meng, and Z.J. Wei: Microstructural characterization and mechanical properties of TiC/near-α Ti composite obtained at slow cooling rate. Mater. Charact. 118, 263 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    B. Kaveendran, G.S. Wang, L.J. Huang, L. Geng, Y. Luo, and H.X. Peng: In situ (Al3Zrp + Al2O3np)/2024Al metal matrix composite with controlled reinforcement architecture fabricated by reaction hot pressing. Mater. Sci. Eng., A 583, 89 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    C.J. Zhang, F.T. Kong, S.L. Xiao, E.T. Zhao, L.J. Xu, and Y.Y. Chen: Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB plus TiC) reinforcements. Mater. Sci. Eng., A 548, 152 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    S.C. Tjong and Y-W. Mai: Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos. Sci. Technol. 68, 583 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    L.J. Huang, L. Geng, H.Y. Xu, and H.X. Peng: In situ TiC particles reinforced Ti6Al4V matrix composite with a network reinforcement architecture. Mater. Sci. Eng., A 528, 2859 (2011).

    Article  CAS  Google Scholar 

  17. 17.

    B. Ya, B.W. Zhou, H.S. Yang, B.K. Huang, F. Jia, and X.G. Zhang: Microstructure and mechanical properties of in situ casting TiC/Ti6Al4V composites through adding multi-walled carbon nanotubes. J. Alloys Compd. 637, 456 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    H. Rastegari and S.M. Abbasi: Producing Ti–6Al–4V/TiC composite with superior properties by adding boron and thermo-mechanical processing. Mater. Sci. Eng., A 564, 473 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    P. Nandwana, J.Y. Hwang, M.Y. Koo, J. Tiley, S.H. Hong, and R. Banerjee: Formation of equiaxed alpha and titanium nitride precipitates in spark plasma sintered TiB/Ti–6Al–4V composites. Mater. Lett. 83, 202 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    L.J. Huang, L. Geng, H.X. Peng, and B. Kaveendran: High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture. Mater. Sci. Eng., A 534, 688 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    H.W. Wang, J.Q. Qi, C.M. Zou, D.D. Zhu, and Z.J. Wei: High-temperature tensile strengths of in situ synthesized TiC/Ti-alloy composites. Mater. Sci. Eng., A 545, 209 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    D. Liu, S.Q. Zhang, A. Li, and H.M. Wang: High temperature mechanical properties of a laser melting deposited TiC/TA15 titanium matrix composite. J. Alloys Compd. 496, 189 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    L. Xiao, W.J. Lu, J.N. Qin, D. Zhang, M.M. Wang, F. Zhu, and B. Ji: High-temperature tensile properties of in situ-synthesized titanium matrix composites with strong dependence on strain rates. J. Mater. Res. 233, 3066 (2008).

    Article  CAS  Google Scholar 

  24. 24.

    C. Badini, G. Ubertalli, D. Puppo, and P. Fino: High temperature behaviour of a Ti–6Al–4V/TiCp composite processed by BE-CIP-HIP method. J. Mater. Sci. 35, 3903 (2000).

    CAS  Article  Google Scholar 

  25. 25.

    J.Q. Lu, J.N. Qin, W.J. Lu, Y.F. Chen, D. Zhang, and H.L. Hou: Hot deformation behavior and microstructure evaluation of hydrogenated Ti–6Al–4V matrix composite. Int. J. Hydrogen Energ. 349, 266 (2009).

    Google Scholar 

  26. 26.

    Y.Q. Ning, B.C. Xie, H.Q. Liang, H. Li, X.M. Yang, and H.Z. Guo: Dynamic softening behavior of TC18 titanium alloy during hot deformation. Mater. Des. 71, 68 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    C. Poletti, L. Germain, F. Warchomicka, M. Dikovits, and S. Mitsche: Unified description of the softening behavior of beta-metastable and alpha plus beta titanium alloys during hot deformation. Mater. Sci. Eng., A 651, 280 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    A. Majorell, S. Srivatsa, and R.C. Picu: Mechanical behavior of Ti–6Al–4V at high and moderate temperatures—Part I: Experimental results. Mater. Sci. Eng., A 326, 297 (2002).

    Article  Google Scholar 

  29. 29.

    J.Q. Qi, H.W. Wang, C.M. Zou, W.Q. Wei, and Z.J. Wei: Temperature dependence of fracture behavior of in situ synthesized TiC/Ti-alloy matrix composite. Mater. Sci. Eng., A 528, 7669 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    A.A.M. da Silva, J.F. dos Santos, and T.R. Strohaecker: Microstructural and mechanical characterisation of a Ti6Al4V/TiC/10p composite processed by the BE-CHIP method. Compos. Sci. Technol. 65, 1749 (2005).

    Article  CAS  Google Scholar 

  31. 31.

    J.H. Zhu, P.K. Liaw, J.M. Corum, and H.E. McCoy: High-temperature mechanical behavior of Ti–6Al–4V alloy and TiCp/Ti–GAl–4V composite. Metall. Mater. Trans. A 30, 1569 (1999).

    Article  Google Scholar 

  32. 32.

    C.J. Boehlert, C.J. Cowen, S. Tamirisakandala, D.J. McEldowney, and D.B. Miracle: In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti–6Al–4V alloy. Scr. Mater. 55, 465 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    Z.F. Yang, W.J. Lu, J.N. Qin, and D. Zhang: Microstructure and tensile properties of in situ synthesized (TiB + TiC + Nd2O3)/Ti-alloy composites at elevated temperature. Mater. Sci. Eng., A 425, 185 (2006).

    Article  CAS  Google Scholar 

  34. 34.

    B. Liu, Y.P. Li, H. Matsumoto, Y.B. Liu, Y. Liu, H.P. Tang, and A. Chiba: Thermomechanical response of particulate-reinforced powder metallurgy titanium matrix composites—A study using processing map. Mater. Sci. Eng., A 527 (18–19), 4733 (2010).

    Article  CAS  Google Scholar 

  35. 35.

    W.W. Peng, W.D. Zeng, Q.J. Wang, Q.Y. Zhao, and H.G. Yu: Effect of processing parameters on hot deformation behavior and microstructural evolution during hot compression of as-cast Ti60 titanium alloy. Mater. Sci. Eng., A 593, 16 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Y.Y. Zong, D.B. Shan, M. Xu, and Y. Lv: Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation. J. Mater. Process. Technol. 209, 1988 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    Y. Liu, J.C. Zhu, Y. Wang, and J.J. Zhan: Hot compressive deformation behavior and microstructure evolution of Ti–6Al–2Zr–1Mo–1Valloy at 1073 K. Mater. Sci. Eng., A 490, 113 (2008).

    Article  CAS  Google Scholar 

  38. 38.

    Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang, and K. Tan: Competition between dynamic recovery and recrystallization during hot deformation for TC18 titanium alloy. Mater. Sci. Eng., A 635, 77 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    F.T. Furuhara, B. Poorganji, H. Abe, and T. Maki: Dynamic recovery and recrystallization in titanium alloys by hot deformation. JOM 59, 64 (2007).

    CAS  Article  Google Scholar 

  40. 40.

    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, 2004); p. 53.

    Google Scholar 

  41. 41.

    B. Wang, L.J. Huang, B.X. Liu, L. Geng, and H.T. Hu: Effects of deformation conditions on the microstructure and substructure evolution of TiBw/Ti60 composite with network structure. Mater. Sci. Eng., A 627, 316 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    H.M. Chan and F.J. Humphreys: The recrystallisation of aluminium–silicon alloys containing a bimodal particle distribution. Acta Metall. 32 (2), 235 (1984).

    CAS  Article  Google Scholar 

  43. 43.

    S. Roy and S. Suwas: The influence of temperature and strain rate on the deformation response and microstructural evolution during hot compression of a titanium alloy Ti–6Al–4V–0.1B. J. Alloys Compd. 548, 110 (2013).

    CAS  Article  Google Scholar 

Download references


This work is financially supported by the National Natural Science Foundation of China (Nos. 51601220 and 51671214) and the Science and Technology Planning Project of Jiangsu Province (No. BY2016026-05).

Author information



Corresponding author

Correspondence to Y. W. Sui.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qi, J.Q., Lu, J., He, Y.Z. et al. Microstructural evolution of TiC/near-α Ti composite during high-temperature tensile test. Journal of Materials Research 31, 3428–3436 (2016). https://doi.org/10.1557/jmr.2016.359

Download citation