Development of bioceramic bone scaffolds by introducing triple liquid phases

Abstract

In this study, a system of triple liquid phases was developed using Li2CO3, Na2CO3, and K2CO3 to improve the densification of the akermanite scaffolds fabricated by selective laser sintering (SLS). The system formed a ternary liquid phase (Li2CO3–Na2CO3–K2CO3) at 399 °C, a binary liquid phase (Na2CO3–K2CO3) at 695 °C, and a unitary liquid phase (K2CO3) at 891 °C during sintering process. The effects of the liquid phases on the sinterability and mechanical properties of the scaffolds were investigated. The fracture toughness and compressive strength is increased by 43 and 152% with liquid phases increasing from 0 to 4 wt%, respectively. This was explained that liquid phases enhanced densification via improving diffusion kinetics and inducing particle rearrangement. In addition, the scaffolds maintained favorable hydroxyapatite (HA) formation ability and cell proliferation ability, which was proved by simulated body fluid (SBF) test and microculture tetrazolium test (MTT), respectively.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    H. Wang, S. Zhao, X. Cui, Y. Pan, W. Huang, S. Ye, S. Luo, M.N. Rahaman, C. Zhang, and D. Wang: Evaluation of three-dimensional silver-doped borate bioactive glass scaffolds for bone repair: Biodegradability, biocompatibility, and antibacterial activity. J. Mater. Res. 30, 2722 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    D. Gopi, N. Murugan, S. Ramya, E. Shinyjoy, and L. Kavitha: Ball flower like manganese, strontium substituted hydroxyapatite/cerium oxide dual coatings on the AZ91 Mg alloy with improved bioactive and corrosion resistance properties for implant applications. RSC Adv. 5, 27402 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    C. Gao, J. Zhuang, P. Li, C. Shuai, and S. Peng: Preparation of micro/nanometer-sized porous surface structure of calcium phosphate scaffolds and the influence on biocompatibility. J. Mater. Res. 29, 1144 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    A. Aminian, K. Pardun, E. Volkmann, G.L. Destri, G. Marletta, L. Treccani, and K. Rezwan: Enzyme-assisted calcium phosphate biomineralization on an inert alumina surface. Acta Biomater. 13, 335 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    B. Gu, F. Liu, Y. Jiang, and K. Zhang: Evaluation of glass-forming ability criterion from phase-transformation kinetics. J. Non-Cryst. Solids 358, 1764 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    H. Mohammadi, M. Sepantafar, and A. Ostadrahimi: The role of bioinorganics in improving the mechanical properties of silicate ceramics as bone regenerative materials. J. Ceram. Sci. Technol. 6, 1 (2015).

    Google Scholar 

  7. 7.

    T. Tian, Y. Han, B. Ma, C. Wu, and J. Chang: Novel co-akermanite (Ca2CoSi2O7) bioceramics with the activity to stimulate osteogenesis and angiogenesis. J. Mater. Chem. B 3, 6773 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    F.H. Perera, F.J. Martínez-Vázquez, P. Miranda, A.L. Ortiz, and A. Pajares: Clarifying the effect of sintering conditions on the microstructure and mechanical properties of β-tricalcium phosphate. Ceram. Int. 36, 1929 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    M.A. Sainz, P. Pena, S. Serena, and A. Caballero: Influence of design on bioactivity of novel CaSiO3–CaMg(SiO3)2 bioceramics: In vitro simulated body fluid test and thermodynamic simulation. Acta Biomater. 6, 2797 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    C. Shuai, Z. Han, P. Feng, C. Gao, T. Xiao, and S. Peng: Akermanite scaffolds reinforced with boron nitride nanosheets in bone tissue engineering. J. Mater. Sci.: Mater. Med. 26, 1 (2015).

    CAS  Google Scholar 

  11. 11.

    P. Feng, C. Gao, C. Shuai, and S. Peng: Toughening and strengthening mechanisms of porous akermanite scaffolds reinforced with nano-titania. RSC Adv. 5, 3498 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    A.S. Sharma, N. Mishra, K. Biswas, and B. Basu: Densification kinetics, phase assemblage and hardness of spark plasma sintered Cu–10 wt% TiB2 and Cu–10 wt% TiB2–10 wt% Pb composites. J. Mater. Res. 28, 1517 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    R.M. German, P. Suri, and S.J. Park: Review: Liquid phase sintering. J. Mater. Sci. 44, 1 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    S. Ramesh, C.Y. Tan, W.H. Yeo, R. Tolouei, M. Amiriyan, I. Sopyan, and W.D. Teng: Effects of bismuth oxide on the sinterability of hydroxyapatite. Ceram. Int. 37, 599 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    J. Zou, G.J. Zhang, and Y.M. Kan: Pressureless densification and mechanical properties of hafnium diboride doped with B4C: From solid state sintering to liquid phase sintering. J. Eur. Ceram. Soc. 30, 2699 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    A.L. Ortiz, O. Borrero-López, M.Z. Quadir, and F. Guiberteau: A route for the pressureless liquid-phase sintering of SiC with low additive content for improved sliding-wear resistance. J. Eur. Ceram. Soc. 32, 965 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    M.A. Malik, M.A. Hashim, and F. Nabi: Ionic liquids in supported liquid membrane technology. Chem. Eng. J. 171, 242 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    W. Wei, K. Chen, and G. Ge: Strongly coupled nanorod vertical arrays for plasmonic sensing. Adv. Mater. 25, 3863 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    M. Azadbeh, H. Danninger, and C. Gierl-Mayer: Particle rearrangement during liquid phase sintering of Cu–20Zn and Cu–10Sn–10Pb prepared from prealloyed powder. Powder Metall. 56, 342 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    T.W. Kim, S.C. Ryu, B.K. Kim, S.Y. Yoon, and H.C. Park: Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Met. Mater. Int. 20, 135 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    S. Vahabzadeh, V.K. Hack, and S. Bose: Lithium-doped β-tricalcium phosphate: Effects on physical, mechanical and in vitro osteoblast cell-material interactions. J. Biomed. Mater. Res., Part B (2015). doi: https://doi.org/10.1002/jbm.b.33485.

    Google Scholar 

  22. 22.

    E.M. Ruiz-Navas, M.L. Delgado, and J.M. Torralba: 2014 based MMCs: Properties improvement by (TiCN)p and trace additions. J. Mater. Sci. 41, 3735 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    Y.T. Zeng, B. Fu, G.H. Tang, L. Zhang, and Y.F. Qian: Effects of lithium on extraction socket healing in rats assessed with micro-computed tomography. Acta Odontol. Scand. 71, 1335 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    J. Goldhahn, J-M. Féron, J. Kanis, S. Papapoulos, J-Y. Reginster, R. Rizzoli, W. Dere, B. Mitlak, Y. Tsouderos, and S. Boonen: Implications for fracture healing of current and new osteoporosis treatments: An ESCEO consensus paper. Calcif. Tissue Int. 90, 343 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    O. Rop, J. Mlcek, T. Jurikova, J. Neugebauerova, and J. Vabkova: Edible flowers-a new promising source of mineral elements in human nutrition. Molecules 17, 6672 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    M.Z. Kirmani, F.N. Sheikh Mohiuddin, I.I. Naqvi, and E. Zahir: Determination of some toxic and essential trace metals in some medicinal and edible plants of Karachi city. J. Basic Appl. Sci. 7, 89 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    C. Shuai, C. Gao, Y. Nie, A. Hu, H. Qu, and S. Peng: Structural design and experimental analysis of a selective laser sintering system with nano-hydroxyapatite powder. J. Biomed. Nanotechnol. 6, 370 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    S. Duan, P. Feng, C. Gao, T. Xiao, K. Yu, C. Shuai, and S. Peng: Microstructure evolution and mechanical properties improvement in liquid-phase-sintered hydroxyapatite by laser sintering. Materials 8, 1162 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro: Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J. Biomed. Mater. Res. 24, 721 (1990).

    CAS  Article  Google Scholar 

  30. 30.

    S. Tarafder, V.K. Balla, N.M. Davies, A. Bandyopadhyay, and S. Bose: Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regener. Med. 7, 631 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    F.J. O’brien: Biomaterials & scaffolds for tissue engineering. Mater. Today 14, 88 (2011).

    Article  Google Scholar 

  32. 32.

    A. Akkouch, Z. Zhang, and M. Rouabhia: Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly(l-lactide- co -ε-caprolactone) scaffold. J. Biomater. Appl. 28, 922 (2014).

    Article  Google Scholar 

  33. 33.

    J.A. Wollmershauser, B.N. Feigelson, E.P. Gorzkowski, C.T. Ellis, R. Goswami, S.B. Qadri, J.G. Tischler, F.J. Kub, and R.K. Everett: An extended hardness limit in bulk nanoceramics. Acta Mater. 69, 9 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    D. Hu, Z. Li, and Y. Zhu: Effect of ZnF2–TiO2–SiO2 additions on the two-step sintering behavior and mechanical properties of sol–gel derived corundum abrasive. Ceram. Int. 42, 7373 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    X. Chen, J. Ou, Y. Wei, Z. Huang, Y. Kang, and G. Yin: Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO–CaO–SiO2 system. J. Mater. Sci.: Mater. Med. 21, 1463 (2010).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the following funds: (1) The Natural Science Foundation of China (51575537, 81572577); (2) Overseas, Hong Kong & Macao Scholars Collaborated Researching Fund of National Natural Science Foundation of China (81428018); (3) Hunan Provincial Natural Science Foundation of China (14JJ1006, 2016JJ1027); (4) The Project of Innovation-driven Plan of Central South University (2015CXS008, 2016CX023); (5) The fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201605); (6) The fund of the State Key Laboratory for Powder Metallurgy; (7) The Open-End Fund for the Valuable and Precision Instruments of Central South University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuping Peng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shuai, C., Duan, S., Wu, P. et al. Development of bioceramic bone scaffolds by introducing triple liquid phases. Journal of Materials Research 31, 3498–3505 (2016). https://doi.org/10.1557/jmr.2016.356

Download citation