Impact of rolling temperature on microstructure, ordered phases, and ductility in Fe–6.5 wt% Si magnetic material


Ordered phases and ductility of Fe–6.5 wt% Si magnetic material were investigated under different rolling temperatures, and the constitutive equation of the warm deformation was established. The results show that at high rolling temperature, accompanying with the appearance of some shallow dimples, the intergranular fracture can be transformed into the quasicleavage fracture, which makes the ductility of warm-rolled sheets greatly improved. In the 450–650 °C rolling temperature range, the antiphase domains (APDs) of warm-rolled sheets are cut, the superdislocation density increases greatly with decreasing warm rolling temperatures, resulting in a decrease in APD sizes during warm deformation. Meanwhile, more B2 and DO3 ordered phases occurring in the matrix improve the long range order parameters, thereby significantly reducing ductility of the alloy. The work softening of Fe–6.5 wt% Si alloy is attributed to a contribution combining the sizes of APDs with ordered phases.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12


  1. 1.

    Z.Y. Wu, X.A. Fan, J. Wang, G.Q. Li, Z.H. Gan, and Z. Zhang: Core loss reduction in Fe–6.5 wt% Si/SiO2 core–shell composites by ball milling coating and spark plasma sintering. J. Alloys Compd. 617, 21 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    J.H. Yu, J.S. Shin, J.S. Bae, Z.H. Lee, T.D. Lee, H.M. Lee, and E.J. Lavernia: The effect of heat treatments and Si contents on B2 ordering reaction in high-silicon steels. Mater. Sci. Eng., A 307, 29 (2001).

    Article  Google Scholar 

  3. 3.

    Y.C. Lin: Investigation of superparamagnetic fine particles of ordered (B2 + DO3) structure and ordered B2 structure with monoclinic a′ Mn. Mater. Sci. Eng., B 77, 40 (2000).

    Article  Google Scholar 

  4. 4.

    R.D. Cava, W.J. Botta, C.S. Kiminami, M. Olzon-Dionysio, S.D. Souza, A.M. Jorge, Jr., and C. Bolfarini: Ordered phases and texture in spray-formed Fe–5 wt% Si. J. Alloys Compd. 509, S260 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    H.J. Ma, Y.J. Li, S.A. Gerasimov, J. Wang, and X.L. Sun: Investigation of transformation models of B2 → DO3 ordered structures for Fe3Al intermetallic under welding condition. Mater. Lett. 62, 1953 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    H.D. Fu, Q. Yang, Z.H. Zhang, and J.X. Xie: Effects of precipitated phase and order degree on bending properties of an Fe–6.5 wt% Si alloy with columnar grains. J. Mater. Res. 26, 1711 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    W. Yang, H. Li, K. Yang, Y.F. Liang, J. Yang, and F. Ye: Hot drawn Fe–6.5 wt% Si wires with good ductility. Mater. Sci. Eng., B 186, 79 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    C.S. Li, C.L. Yang, G.J. Cai, and Q.W. Wang: Ordered phases and microhardness of Fe–6.5% Si steel sheet after hot rolling and annealing. Mater. Sci. Eng., A 650, 84 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    T. Ros-Yañez, Y. Houbaert, O. Fischer, and J. Schneider: Production of high silicon steel for electrical applications by thermomechanical processing. J. Mater. Process. Technol. 143–144, 916 (2003).

    Article  Google Scholar 

  10. 10.

    P. Rodríguez-Calvillo, Y. Houbaert, R. Petrov, L. Kestens, and R. Colás: High temperature deformation of silicon steel. Mater. Chem. Phys. 136, 710 (2012).

    Article  Google Scholar 

  11. 11.

    J. Barros, T. Ros-Yañez, L. Vandenbossche, L. Dupré, J. Melkebeek, and Y. Houbaert: The effect of Si and Al concentration gradients on the mechanical and magnetic properties of electrical steel. J. Magn. Magn. Mater. 290–291, 1457 (2005).

    Article  Google Scholar 

  12. 12.

    Q. Li, T.S. Wang, T.F. Jing, Y.W. Gao, J.F. Zhou, J.K. Yu, and H.B. Li: Warm deformation behavior of quenched medium carbon steel and its effect on microstructure and mechanical properties. Mater. Sci. Eng., A 515, 38 (2009).

    Article  Google Scholar 

  13. 13.

    Y.Q. Zhang, S.Y. Jiang, Y.N. Zhao, and D.B. Shan: Isothermal precision forging of complex-shape rotating disk of aluminum alloy based on processing map and digitized technology. Mater. Sci. Eng., A 580, 294 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    C.W. Su, C.G. Chao, and T.F. Liu: Formation of (B2 + DO3) phases at a/2〈100〉 anti-phase boundary in an Fe–23 at.%Al–8.5 at.%Ti alloy. Scripta Mater. 57, 917 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    T. Ros-Yáñez, D. Ruiz, J. Barros, and Y. Houbaert: Advances in the production of high-silicon electrical steel by thermomechanical processing and by immersion and diffusion annealing. J. Alloys Compd. 369, 125 (2004).

    Article  Google Scholar 

  16. 16.

    Y. Koizumi, S.M. Allen, M. Ouchi, and Y. Minamino: Effects of solute and vacancy segregation on antiphase boundary migration in stoichiometric and Al-rich Fe3Al: A phase-field simulation study. Intermetallics 18, 1297 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    H. Li, Y.F. Liang, W. Yang, F. Ye, J.P. Lin, and J.X. Xie: Disordering induced work softening of Fe–6.5 wt% Si alloy during warm deformation. Mater. Sci. Eng., A 628, 262 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    H.J. Jung and J.R. Kim: Influence of cooling rate on iron loss behavior in 6.5 wt% grain-oriented silicon steel. J. Magn. Magn. Mater. 353, 76 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    M. Naito, T. Nakagawa, N. Machida, T. Shigematsu, M. Nakao, and K. Sudoh: Fabrication of highly oriented DO3–Fe3Si nanocrystals by solid-state dewetting of Si ultrathin layer. Thin Solid Films 539, 108 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    K.N. Kim, L.M. Pan, J.P. Lin, Y.L. Wang, Z. Lin, and G.L. Chen: The effect of boron content on the processing for Fe–6.5 wt% Si electrical steel sheets. J. Magn. Magn. Mater. 277, 331 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    Y.F. Liang, S.L. Shang, J. Wang, Y. Wang, F. Ye, J.P. Lin, G.L. Chen, and Z.K. Liu: First-principles calculations of phonon and thermodynamic properties of Fe–Si compounds. Intermetallics 19, 1374 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    L.J. Fan, Y.B. Zhong, Y.L. Xu, Z. Shen, T.X. Zheng, and Z.M. Ren: Effect of static magnetic field on microstructure and interdiffusion behavior of Fe/Fe–Si alloy diffusion couple. J. Alloys Compd. 645, 369 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    A.Y. Chen, S.S. Shi, H.L. Tian, H.H. Ruan, X. Li, D. Pan, and J. Lu: Effect of warm deformation on microstructure and mechanical properties of a layered and nanostructured 304 stainless steel. Mater. Sci. Eng., A 595, 34 (2014).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation Project (Grant No. 51174057, 51274062), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130042110040), and the Fundamental Research Funds for the Central Universities (N130607002).

Author information



Corresponding author

Correspondence to Changsheng Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Cai, G., Cai, B. et al. Impact of rolling temperature on microstructure, ordered phases, and ductility in Fe–6.5 wt% Si magnetic material. Journal of Materials Research 31, 3004–3015 (2016).

Download citation