An improved kinetics model to describe dynamic recrystallization behavior under inconstant deformation conditions


The classical dynamic recrystallization (DRX) kinetics models, such as Avrami equation, are often used to describe the DRX behaviors of alloys. However, it is found that the classical DRX kinetics models cannot be directly applied to evaluate DRX volume fractions under inconstant deformation conditions, such as at fluctuant deformation temperature and strain rate. It obviously limits their application in the practical industrial production. Therefore, an improved DRX kinetics model is proposed based on the hypothesis that the derivatives of DRX volume fraction with respect to strain only depends on the current deformation temperature, strain rate, and DRX volume fraction. To verify the improved DRX kinetics model, the hot compressive tests in which the strain rate is inconstant are carried out on a solution-treated Ni-based superalloy. Experimental results indicate that the improved DRX kinetics model can well predict the DRX behavior under inconstant deformation conditions.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10


  1. 1.

    H.J. McQueen: Development of dynamic recrystallization theory. Mater. Sci. Eng., A 387–389, 203 (2004).

    Article  CAS  Google Scholar 

  2. 2.

    J. De Jaeger, D. Solas, O. Fandeur, J. Schmitt, and C. Rey: 3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718. Mater. Sci. Eng., A 33, 646 (2015).

    Google Scholar 

  3. 3.

    H. Beladi and P.D. Hodgson: Effect of carbon content on the recrystallization kinetics of Nb-steels. Scr. Mater. 56, 1059 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    S. Vervynckt, K. Verbeken, P. Thibaux, and Y. Houbaert: Recrystallization–precipitation interaction during austenite hot deformation of a Nb microalloyed steel. Mater. Sci. Eng., A 528, 5519 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    G.L. Ji, F.G. Li, Q.H. Li, H.Q. Li, and Z. Li: Research on the dynamic recrystallization kinetics of Aermet100 steel. Mater. Sci. Eng., A 527, 2350 (2010).

    Article  CAS  Google Scholar 

  6. 6.

    S.D. Gu, L.W. Zhang, C. Zhang, J.H. Ruan, and Y. Zhen: Modeling the effects of processing parameters on dynamic recrystallization behavior of deformed 38MnVS6 steel. J. Mater. Eng. Perform. 24, 1790 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    M.S. Chen, Y.C. Lin, and X.S. Ma: The kinetics of dynamic recrystallization of 42CrMo steel. Mater. Sci. Eng., A 556, 260 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    B.C. Zhao, T. Zhao, G.Y. Li, and Q. Lu: The kinetics of dynamic recrystallization of a low carbon vanadium-nitride microalloyed steel. Mater. Sci. Eng., A 604, 117 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    D. Xu, M.Y. Zhu, Z.Y. Tang, and C. Sun: Determination of the dynamic recrystallization kinetics model for SCM435 steel. J. Wuhan. Univ. Technol., Mater. Sci. Ed. 28, 819 (2013).

    Article  CAS  Google Scholar 

  10. 10.

    Y.G. Liu, M.Q. Li, and J. Luo: The modelling of dynamic recrystallization in the isothermal compression of 300M steel. Mater. Sci. Eng., A 574, 1 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    H. Mirzadeh and A. Najafizadeh: Prediction of the critical conditions for initiation of dynamic recrystallization. Mater. Des. 31, 1174 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Y.W. Xu, D. Tang, Y. Song, and X.G. Pan: Dynamic recrystallization kinetics model of X70 pipeline steel. Mater. Des. 39, 168 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    S. Mandal, P.V. Sivaprasad, and R.K. Dube: Modeling microstructural evolution during dynamic recrystallization of Alloy D9 using artificial neural network. J. Mater. Eng. Perform. 16, 672 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    A. Momeni and K. Dehghani: Prediction of dynamic recrystallization kinetics and grain size for 410 martensitic stainless steel during hot deformation. Met. Mater. Int. 16, 843 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    G.R. Ebrahimi, H. Keshmiri, A. Momeni, and M. Mazinani: Dynamic recrystallization behavior of a superaustenitic stainless steel containing 16%Cr and 25%Ni. Mater. Sci. Eng., A 528, 7488 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    G.R. Stewart, J.J. Jonas, and F. Montheillet: Kinetics and critical conditions for the initiation of dynamic recrystallization in 304 stainless steel. ISIJ Int. 44, 1581 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    A. Marchattiwar, A. Sarkar, J.K. Chakravartty, and B.P. Kashyap: Dynamic recrystallization during hot deformation of 304 austenitic stainless steel. J. Mater. Eng. Perform. 22, 2168 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    D. Ohadi, M.H. Parsa, and H. Mirzadeh: Development of dynamic recrystallization maps based on the initial grain size. Mater. Sci. Eng., A 565, 90 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    G.R. Ebrahimi, H. Keshmiri, A.R. Maldad, and A. Momeni: Dynamic recrystallization behavior of 13%Cr martensitic stainless steel under hot working condition. J. Mater. Sci. Technol. 28, 467 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, and J.M. Prado: Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels. Acta Mater. 53, 4605 (2005).

    Article  CAS  Google Scholar 

  21. 21.

    G.L. Ji, Q. Li, and L. Li: The kinetics of dynamic recrystallization of Cu–0.4Mg alloy. Mater. Sci. Eng., A 586, 197 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    P. Changizian, A. Zarei-Hanzaki, and H.R. Abedi: On the recrystallization behavior of homogenized AZ81 magnesium alloy: The effect of mechanical twins and γ precipitates. Mater. Sci. Eng., A 558, 44 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    D.X. Zhang, X.Y. Yang, H. Sun, Y. Li, J. Wang, Z.R. Zhang, Y.X. Ye, and T. Sakai: Dynamic recrystallization behaviors and the resultant mechanical properties of a Mg–Y–Nd–Zr alloy during hot compression after aging. Mater. Sci. Eng., A 640, 51 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    T.C. Xu, X.D. Peng, J. Qin, Y.F. Chen, Y. Yang, and G.B. Wei: Dynamic recrystallization behavior of Mg–Li–Al–Nd duplex alloy during hot compression. J. Alloys Compd. 639, 79 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    H.C. Xiao, S.N. Jiang, B. Tang, W.H. Hao, Y.H. Gao, Z.Y. Chen, and C.M. Liu: Hot deformation and dynamic recrystallization behaviors of Mg–Gd–Y–Zr alloy. Mater. Sci. Eng., A 628, 311 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    B.J. Lv, J. Peng, D.W. Shi, A.T. Tang, and F.S. Pan: Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg–2.0Zn–0.3Zr alloy based on true stress–strain curves. Mater. Sci. Eng., A 560, 727 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    N. Cui, F.T. Kong, X.P. Wang, Y.Y. Chen, and H.T. Zhou: Hot deformation behavior and dynamic recrystallization of a β-solidifying TiAl alloy. Mater. Sci. Eng., A 652, 231 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    K. Tan, J. Li, Z.J. Guan, J.B. Yang, and J.X. Shu: The identification of dynamic recrystallization and constitutive modeling during hot deformation of Ti55511 titanium alloy. Mater. Des. 84, 204 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Y.Q. Ning, Z.K. Yao, M.W. Fu, and H.Z. Guo: Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096: I. Microstructure and mechanism. Mater. Sci. Eng., A 528, 8065 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    H.B. Zhang, K.F. Zhang, H.P. Zhou, Z. Lu, C.H. Zhao, and X.L. Yang: Effect of strain rate on microstructure evolution of a nickel-based superalloy during hot deformation. Mater. Des. 80, 51 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He: Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater. Des. 57, 568 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li: EBSD study of a hot deformed nickel-based superalloy. J. Alloys Compd. 640, 101 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C.Y. Zhao, X. Ma, and Z.L. Long: EBSD analysis of evolution of dynamic recrystallization grains and δ phase in a nickel-based superalloy during hot compressive deformation. Mater. Des. 97, 13 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    M.S. Chen, Y.C. Lin, K.K. Li, and Y. Zhou: A new method to establish dynamic recrystallization kinetics model of a typical solution-treated Ni-based superalloy. Comput. Mater. Sci. 122, 150 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    H. Riedel and J. Svoboda: A model for strain hardening, recovery, recrystallization and grain growth with applications to forming processes of nickel base alloys. Mater. Sci. Eng., A 665, 175 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    H.Y. Wu, L.X. Du, and X.H. Liu: Dynamic recrystallization and precipitation behavior of Mn–Cu–V weathering steel. J. Mater. Sci. Technol. 27, 1131 (2011).

    Article  Google Scholar 

  37. 37.

    H. Hallberg, B. Svendsen, T. Kayser, and M. Ristinmaa: Microstructure evolution during dynamic discontinuous recrystallization in particle-containing Cu. Comput. Mater. Sci. 84, 327 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    I. Mejía, A. Bedolla-Jacuinde, C. Maldonado, and J.M. Cabrera: Determination of the critical conditions for the initiation of dynamic recrystallization in boron microalloyed steels. Mater. Sci. Eng., A 528, 4133 (2011).

    Article  CAS  Google Scholar 

  39. 39.

    G.Z. Quan, S.A. Pu, H.R. Wen, Z.Y. Zou, and J. Zhou: Quantitative analysis of dynamic softening behaviors induced by dynamic recrystallization for Ti–10V–2Fe–2Al alloy. High Temp. Mater. Process. 34, 549 (2015).

    CAS  Google Scholar 

  40. 40.

    J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin: The Avrami kinetics of dynamic recrystallization. Acta Mater. 57, 2748 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    J. Liu, Z. Cui, and L. Ruan: A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B. Mater. Sci. Eng., A 529, 300 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    H. Won Lee and Y.T. Im: Numerical modeling of dynamic recrystallization during nonisothermal hot compression by cellular automata and finite element analysis. Int. J. Mech. Sci. 52, 1277 (2010).

    Article  Google Scholar 

  43. 43.

    Y. Xu, L.X. Hu, and Y. Sun: Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy. J. Alloys Compd. 580, 262 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    J.B. Li, Y. Liu, Y. Wang, B. Liu, and Y.H. He: Dynamic recrystallization behavior of an as-cast TiAl alloy during hot compression. Mater. Charact. 97, 169 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    J.B. Jia, K.F. Zhang, and Z. Lu: Dynamic recrystallization kinetics of a powder metallurgy Ti–22Al–25Nb alloy during hot compression. Mater. Sci. Eng., A 607, 630 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    H.L. Wei, G.Q. Liu, X. Xiao, and M.H. Zhang: Dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel. Mater. Sci. Eng., A 573, 215 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    L. Cheng, H. Chang, B. Tang, H.C. Kou, and J.S. Li: Deformation and dynamic recrystallization behavior of a high Nb containing TiAl alloy. J. Alloys Compd. 552, 363 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    D.L. OuYang, M.W. Fu, and S.Q. Lu: Study on the dynamic recrystallization behavior of Ti-alloy Ti–10V–2Fe–3V in β processing via experiment and simulation. Mater. Sci. Eng., A 619, 26 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    X.C. Li, L.L. Duan, J.W. Li, and X.C. Wu: Experimental study and numerical simulation of dynamic recrystallization behavior of a micro-alloyed plastic mold steel. Mater. Des. 66, 309 (2015).

    CAS  Article  Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (Nos. 51305466, 51375502), National Key Basic Research Program (Grant No. 2013CB035801), State key laboratory of High Performance Complex Manufacturing (No. zzyjkt2014-01), the Project of Innovation-driven Plan in Central South University (Grant No. 2016CX008), the Natural Science Foundation for Distinguished Young Scholars of Hunan Province (Grant No. 2016JJ1017), and Program of Chang Jiang Scholars of Ministry of Education (Grant No. Q2015140), China.

Author information



Corresponding authors

Correspondence to Ming-Song Chen or Yong-Cheng Lin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, MS., Li, KK., Lin, YC. et al. An improved kinetics model to describe dynamic recrystallization behavior under inconstant deformation conditions. Journal of Materials Research 31, 2994–3003 (2016).

Download citation