Structural transformations in highly oriented seven modulated martensite Ni–Mn–Ga thin films on an Al2O3 \(\left({11\bar 20} \right)\) substrate

Abstract

Highly oriented Ni–Mn–Ga thin film with multiple variants and room temperature orthorhombic martensite structure were prepared on a single crystalline Al2O3 \(\left({11\bar 20} \right)\) substrate by DC magnetron sputtering. X-ray diffraction and rocking curve measurements reveal the film as (202)7M oriented with an excellent crystal quality (Δω = 1.8°). Spot-like pole figures indicate that the Ni–Mn–Ga film grows with a strong in-plane preferred orientation. An in-depth analysis of the measured pole figure reveals the presence of a retained austenite phase in the film. Two phase transformations, MS ∼345 K and TC ∼385 K, are observed and are attributed to first order structural transformation from cubic to orthorhombic, and second order phase transformation from ferromagnetic to paramagnetic, respectively. In situ high temperature x-ray diffraction measurements provide a clear indication of a thermally-induced martensite ↔ austenite reversible structural phase transformation in the film. The presence of martensite plates with seven modulated orthorhombic structure and adaptive nano-twins are some of the important microscopic features observed in the film with transmission electron microscopy investigations.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

References

  1. 1.

    A. Sozinov, A. Likhachev, N. Lanska, and K. Ullakko: Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 80, 1746 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    E. Faran and D. Shilo: Implications of twinning kinetics on the frequency response in NiMnGa actuators. Appl. Phys. Lett. 100, 151901 (2012).

    Article  CAS  Google Scholar 

  3. 3.

    K. Otsuka and C.M. Wayman: Shape Memory Materials (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  4. 4.

    Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa: Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    T. Kakeshita, T. Takeuchi, T. Fukuda, M. Tsujiguchi, T. Saburi, R. Oshima, and S. Muto: Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation. Appl. Phys. Lett. 77, 1502 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    R.D. James and M. Wuttig: Magnetostriction of martensite. Philos. Mag. A 77, 1273 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    K. Oikawa, T. Ota, F. Gejima, T. Ohmori, R. Kainuma, and K. Ishida: Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co–Ni–Ga and Co–Ni–Al systems. Mater. Trans. 42, 2472 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    K. Oikawa, L. Wulff, T. Iijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kainuma, and K. Ishida: Promising ferromagnetic Ni–Co–Al shape memory alloy system. Appl. Phys. Lett. 79, 3290 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    J. Marcos, L. Mañosa, A. Planes, F. Casanova, X. Batlle, and A. Labarta: Multiscale origin of the magnetocaloric effect in Ni–Mn–Ga shape-memory alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 68, 094401 (2003).

    Article  CAS  Google Scholar 

  10. 10.

    B. Kiefer and D.C. Lagoudas: Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philos. Mag. 85, 4289 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    H. Karaca, I. Karaman, B. Basaran, D. Lagoudas, Y.I. Chumlyakov, and H. Maier: On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Mater. 55, 4253 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    M. Ohtsuka, M. Matsumoto, and K. Itagaki: Effect of iron and cobalt addition on magnetic and shape memory properties of Ni2MnGa sputtered films. Mater. Sci. Eng., A 438, 935 (2006).

    Article  CAS  Google Scholar 

  13. 13.

    G.J. Mahnke, M. Seibt, and S. Mayr: Microstructure and twinning in epitaxial NiMnGa films. Phys. Rev. B: Condens. Matter Mater. Phys. 78, 012101 (2008).

    Article  CAS  Google Scholar 

  14. 14.

    M. Thomas, O. Heczko, J. Buschbeck, U. Rößler, J. McCord, N. Scheerbaum, L. Schultz, and S. Fähler: Magnetically induced reorientation of martensite variants in constrained epitaxial Ni–Mn–Ga films grown on MgO (001). New J. Phys. 10, 023040 (2008).

    Article  CAS  Google Scholar 

  15. 15.

    A. Backen, S.R. Yeduru, M. Kohl, S. Baunack, A. Diestel, B. Holzapfel, L. Schultz, and S. Fähler: Comparing properties of substrate-constrained and freestanding epitaxial Ni–Mn–Ga films. Acta Mater. 58, 3415 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    A. Sharma, S. Mohan, and S. Suwas: Development of bi-axial preferred orientation in epitaxial NiMnGa thin films and its consequence on magnetic properties. Acta Mater. 113, 259 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    P. Tello, F. Castano, R.C. O’Handley, S.M. Allen, M. Esteve, F. Castano, A. Labarta, and X. Batlle: Ni–Mn–Ga thin films produced by pulsed laser deposition. J. Appl. Phys. 91, 8234 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    A. Hakola, O. Heczko, A. Jaakkola, T. Kajava, and K. Ullakko: Pulsed laser deposition of NiMnGa thin films on silicon. Appl. Phys. A 79, 1505 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    H. Rumpf, C. Craciunescu, H. Modrow, K. Olimov, E. Quandt, and M. Wuttig: Successive occurrence of ferromagnetic and shape memory properties during crystallization of NiMnGa freestanding films. J. Magn. Magn. Mater. 302, 421 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    X. Jin, M. Marioni, D. Bono, S. Allen, R. O’Handley, and T. Hsu: Empirical mapping of Ni–Mn–Ga properties with composition and valence electron concentration. J. Appl. Phys. 91, 8222 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    L. Righi, F. Albertini, L. Pareti, A. Paoluzi, and G. Calestani: Commensurate and incommensurate “5M” modulated crystal structures in Ni–Mn–Ga martensitic phases. Acta Mater. 55, 5237 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    J. Pons, V. Chernenko, R. Santamarta, and E. Cesari: Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Mater. 48, 3027 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    N. Lanska, O. Soderberg, A. Sozinov, Y. Ge, K. Ullakko, and V. Lindroos: Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys. J. Appl. Phys. 95, 8074 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    V. Martynov and V. Kokorin: The crystal structure of thermally-and stress-induced martensites in Ni2MnGa single crystals. J. Phys. III 2, 739 (1992).

    CAS  Google Scholar 

  25. 25.

    L. Righi, F. Albertini, E. Villa, A. Paoluzi, G. Calestani, V. Chernenko, S. Besseghini, C. Ritter, and F. Passaretti: Crystal structure of 7M modulated Ni–Mn–Ga martensitic phase. Acta Mater. 56, 4529 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    G. Jakob and H.J. Elmers: Epitaxial films of the magnetic shape memory material Ni2MnGa. J. Magn. Magn. Mater. 310, 2779 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    G. Jakob, T. Eichhorn, M. Kallmayer, and H.J. Elmers: Correlation of electronic structure and martensitic transition in epitaxial Ni2MnGa films. Phys. Rev. B: Condens. Matter Mater. Phys. 76, 174407 (2007).

    Article  CAS  Google Scholar 

  28. 28.

    J. Tillier, D. Bourgault, P. Odier, L. Ortega, S. Pairis, O. Fruchart, N. Caillault, and L. Carbone: Tuning macro-twinned domain sizes and the b-variants content of the adaptive 14-modulated martensite in epitaxial Ni–Mn–Ga films by co-sputtering. Acta Mater. 59, 75 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    B. Yang, Y. Zhang, Z. Li, G. Qin, X. Zhao, C. Esling, and L. Zuo: Insight into variant selection of seven-layer modulated martensite in Ni–Mn–Ga thin films grown on MgO (001) substrate. Acta Mater. 93, 215 (2015).

    Article  CAS  Google Scholar 

  30. 30.

    B. Yang, Z.B. Li, Y.D. Zhang, G.W. Qin, C. Esling, O. Perroud, X. Zhao, and L. Zuo: Microstructural features and orientation correlations of non-modulated martensite in Ni–Mn–Ga epitaxial thin films. Acta Mater. 61, 6809 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    L. Schulz: A direct method of determining preferred orientation of a flat reflection sample using a Geiger Counter x-ray spectrometer. J. Appl. Phys. 20, 1030 (1949).

    Article  Google Scholar 

  32. 32.

    K. Pawlik and P. Ozga: LaboTex: the texture analysis software. Göttinger Arbeiten zur Geologie und Paläontologie, SB4 (1999).

  33. 33.

    D.C. Dunand and P. Müllner: Size effects on magnetic actuation in Ni–Mn–Ga shape-memory alloys. Adv. Mater. 23, 216 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    M. Hordon and B. Averbach: X-ray measurements of dislocation density in deformed copper and aluminum single crystals. Acta Metall. 9, 237 (1961).

    CAS  Article  Google Scholar 

  35. 35.

    I. Petrov, P. Barna, L. Hultman, and J. Greene: Microstructural evolution during film growth. J. Vac. Sci. Technol., A 21, S117 (2003).

    CAS  Article  Google Scholar 

  36. 36.

    P. Gay, P. Hirsch, and A. Kelly: The estimation of dislocation densities in metals from x-ray data. Acta Metall. 1, 315 (1953).

    CAS  Article  Google Scholar 

  37. 37.

    P. Stadelmann: JEMS JAVA electron microscopy software. Version 2 (2004); p. W2005.

  38. 38.

    D.Y. Cong, Y.D. Zhang, C. Esling, Y.D. Wang, J.S. Lecomte, X. Zhao, and L. Zuo: Microstructural and crystallographic characteristics of interpenetrating and non-interpenetrating multiply twinned nanostructure in a Ni–Mn–Ga ferromagnetic shape memory alloy. Acta Mater. 59, 7070 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    D.Y. Cong, Y.D. Zhang, Y.D. Wang, M. Humbert, X. Zhao, T. Watanabe, L. Zuo, and C. Esling: Experiment and theoretical prediction of martensitic transformation crystallography in a Ni–Mn–Ga ferromagnetic shape memory alloy. Acta Mater. 55, 4731 (2007).

    CAS  Article  Google Scholar 

  40. 40.

    B. Yang, Y. Zhang, Z. Li, G. Qin, C. Esling, X. Zhao, and L. Zuo: Crystallographic orientation of modulated martensite in epitaxially grown Ni–Mn–Ga thin film. Thin Solid Films 584, 90 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    P.J. Brown, B. Dennis, J. Crangle, T. Kanomata, M. Matsumoto, K-U. Neumann, L.M. Justham, and K.R.A. Ziebeck: Stability of martensitic domains in the ferromagnetic alloy Ni2MnGa: A mechanism for shape memory behaviour. J. Phys.: Condens. Matter 16, 65 (2003).

    Google Scholar 

  42. 42.

    A. Khachaturyan, S. Shapiro, and S. Semenovskaya: Adaptive phase formation in martensitic transformation. Phys. Rev. B: Condens. Matter Mater. Phys. 43, 10832 (1991).

    CAS  Article  Google Scholar 

  43. 43.

    J. Pons, R. Santamarta, V. Chernenko, and E. Cesari: Structure of the layered martensitic phases of Ni–Mn–Ga alloys. Mater. Sci. Eng., A 438, 931 (2006).

    Article  CAS  Google Scholar 

  44. 44.

    M. Johnson, P. Bloemen, F. Den Broeder, and J. De Vries: Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409 (1996).

    CAS  Article  Google Scholar 

  45. 45.

    L. Straka, O. Heczko, and K. Ullakko: Investigation of magnetic anisotropy of Ni–Mn–Ga seven-layered orthorhombic martensite. J. Magn. Magn. Mater. 272, 2049 (2004).

    Article  CAS  Google Scholar 

  46. 46.

    O. Heczko, K. Jurek, and K. Ullakko: Magnetic properties and domain structure of magnetic shape memory Ni–Mn–Ga alloy. J. Magn. Magn. Mater. 226, 996 (2001).

    Article  Google Scholar 

  47. 47.

    Y. Zhang, R. Hughes, J. Britten, J. Preston, G. Botton, and M. Niewczas: Self-activated reversibility in the magnetically induced reorientation of martensitic variants in ferromagnetic Ni–Mn–Ga films. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 054406 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was sponsored by Department of Information Technology (DietY), MCIT, Govt. of India. We acknowledge Dr. S.V Kamat and Dr. Manivel Raja (Defense Metallurgical Research Laboratory, Hyderabad, India) for providing sputtering target for the present work. The characterization of as deposited films were carried out at Micro and Nano Characterization Facility at Center for Nano Science and Engineering and AFMM, Indian Institute of Science. The author is also thankful to Prof. Rajeev Ranjan for allowing to use the X-ray facility for this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Mohan, S. & Suwas, S. Structural transformations in highly oriented seven modulated martensite Ni–Mn–Ga thin films on an Al2O3 \(\left({11\bar 20} \right)\) substrate. Journal of Materials Research 31, 3016–3026 (2016). https://doi.org/10.1557/jmr.2016.317

Download citation