Skip to main content
Log in

Strain rate sensitivity, temperature sensitivity, and strain hardening during the isothermal compression of BT25y alloy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The high-temperature flow behavior and flow stress sensitivity of BT25y alloy were investigated. Results show that hot deformation is accompanied by the dynamic competition between work hardening and flow softening. The strain rate sensitivity exponent m tends to decrease with the strain rate after a first rise, and reaches the maximum at strain rate of 0.1 s−1. There is a large temperature range exhibiting m values above 0.2 at strain rates of 0.01–0.1 s−1. The temperature sensitivity exponent s shows an overall dropping trend with elevated temperature. The strain hardening exponent n first decreases and then increases with the strain at strain rate of 0.01 s−1. Large positive n values lie in areas with high strain rate, and small negative n values are located in areas with lower temperature and small strain rate. Secondary lamellar α appears near the phase transition temperature. The microstructure presents elongated characteristics at high strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

Similar content being viewed by others

References

  1. E.O. Ezugwu and Z.M. Wang: Titanium alloys and their machinability—A review. J. Mater. Process. Technol. 68 (3), 262 (1997).

    Article  Google Scholar 

  2. T. Wang, H.Z. Guo, Y.W. Wang, X.N. Peng, Y. Zhao, and Z.K. Yao: The effect of microstructure on tensile properties, deformation mechanisms and fracture models of TG6 high temperature titanium alloy. Mater. Sci. Eng., A 528 (6), 2370 (2011).

    Article  Google Scholar 

  3. X. Ma, W.D. Zeng, F. Tian, and Y.G. Zhou: The kinetics of dynamic globularization during hot working of a two phase titanium alloy with starting lamellar microstructure. Mater. Sci. Eng., A 548, 6 (2012).

    Article  CAS  Google Scholar 

  4. X.M. Yang, H.Z. Guo, H.Q. Liang, Z.K. Yao, and S.C. Yuan: Flow behavior and constitutive equation of Ti–6.5Al–2Sn–4Zr–4Mo–1W–0.2Si titanium alloy. J. Mater. Eng. Perform. 25 (4), 1347 (2016).

    Article  CAS  Google Scholar 

  5. V.N. Moiseyev: Titanium Alloys: Russian Aircraft and Aerospace Applications (CRC Press, New York, USA, 2006); p. 21.

    Google Scholar 

  6. K.X. Wang, W.D. Zeng, Y.Q. Zhao, Y.J. Lai, and Y.G. Zhou: Dynamic globularization kinetics during hot working of Ti17 alloy with initial lamellar microstructure. Mater. Sci. Eng., A 527, 2559 (2010).

    Article  Google Scholar 

  7. X. Ma, W.D. Zeng, F. Tian, Y. Sun, and Y.G. Zhou: Modeling constitutive relationship of BT25 titanium alloy during hot deformation by artificial neural network. J. Mater. Eng. Perform. 21 (8), 1591 (2012).

    Article  CAS  Google Scholar 

  8. Y. Nan, Y.Q. Ning, H.Q. Liang, H.Z. Guo, Z.K. Yao, and M.W. Fu: Work-hardening effect and strain-rate sensitivity behavior during hot deformation of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater. Des. 82, 84 (2015).

    Article  CAS  Google Scholar 

  9. H.Q. Liang, Y. Nan, Y.Q. Ning, H. Li, J.L. Zhang, Z.F. Shi, and H.Z. Guo: Correlation between strain-rate sensitivity and dynamic softening behavior during hot processing. J. Alloys Compd. 632, 478 (2015).

    Article  CAS  Google Scholar 

  10. Y.H. Liu, Y.Q. Ning, X.M. Yang, Z.K. Yao, and H.Z. Guo: Effect of temperature and strain rate on the workability of FGH4096 superalloy in hot deformation. Mater. Des. 95, 669 (2016).

    Article  CAS  Google Scholar 

  11. J. Luo and M.Q. Li: Strain rate sensitivity and strain hardening exponent during the isothermal compression of Ti60 alloy. Mater. Sci. Eng., A 538, 156 (2012).

    Article  CAS  Google Scholar 

  12. W.S. Lee, C.F. Lin, T.H. Chen, and H.H. Hwang: Effects of strain rate and temperature on mechanical behavior of Ti–15Mo–5Zr–3Al alloy. J. Mech. Behav. Biomed. Mater. 1 (4), 336 (2008).

    Article  Google Scholar 

  13. S.T. Chiou, H.L. Tsai, and W.S. Lee: Impact mechanical response and microstructural evolution of Ti alloy under various temperatures. J. Mater. Process. Technol. 209 (5), 2282 (2009).

    Article  CAS  Google Scholar 

  14. W.S. Lee and C.F. Lin: High-temperature deformation behavior of Ti6Al4V alloy evaluated by high strain-rate compression tests. J. Mater. Process. Technol. 5 (1–3), 127 (1998).

    Article  Google Scholar 

  15. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad: Hot working of commercial Ti–6Al–4V with an equiaxed α — β microstructure: Materials modeling considerations. Mater. Sci. Eng., A 284 (1–2), 184 (2000).

    Article  Google Scholar 

  16. W.J. Jia, W.D. Zeng, Y.G. Zhou, J.R. Liu, and Q.J. Wang: High-temperature deformation behavior of Ti60 titanium alloy. Mater. Sci. Eng., A 528, 4068 (2011).

    Article  Google Scholar 

  17. Y.C. Lin and X.M. Chen: A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater. Des. 32 (4), 1733 (2011).

    Article  CAS  Google Scholar 

  18. Y.C. Lin, M.S. Chen, and J. Zhang: Modeling of flow stress of 42CrMo steel under hot compression. Mater. Sci. Eng., A 499 (1–2), 88 (2009).

    Article  Google Scholar 

  19. J. Cui, H. Yang, Z. Sun, H. Li, Z. Li, and C. Shen: Flow behavior and constitutive model using piecewise function of strain for TC11 alloy. Rare Met. Mater. Eng. 41 (3), 397 (2012).

    Article  CAS  Google Scholar 

  20. J. Lin and F.P.E. Dunne: Modelling grain growth evolution and necking in superplastic blow-forming. Int. J. Mech. Sci. 43 (3), 595 (2001).

    Article  Google Scholar 

  21. G.C. Wang and M.W. Fu: Maximum m superplasticity deformation for Ti–6Al–4V titanium alloy. J. Mater. Process. Technol. 192–193, 555 (2007).

    Article  Google Scholar 

  22. A.K. Ghosh: On the measurement of strain-rate sensitivity for deformation mechanism in conventional and ultra-fine grain alloys. Mater. Sci. Eng., A 463 (1–2), 36 (2007).

    Article  Google Scholar 

  23. R. Hales, S.R. Holdsworth, M.P. O’Donnell, I.J. Perrin, and R.P. Skelton: A code of practice for the determination of cyclic stress-strain data. Mater. High Temp. 19 (4), 165 (2002).

    Article  Google Scholar 

  24. W.A. Backfen, I.R. Turner, and D.H. Avery: Superplasticity in an Al–Zn alloy. ASM Trans. Q. 57, 980 (1964).

    Google Scholar 

  25. J. Luo, M.Q. Li, W.X. Yu, and H. Li: The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti–6Al–4V alloy. Mater. Des. 31, 741 (2010).

    Article  CAS  Google Scholar 

  26. L.M. Lei, X. Huang, M.M. Wang, L.Q. Wang, J.N. Qin, and S.Q. Lu: Effect of temperature on deformation behavior and microstructures of TC11 titanium alloy. Mater. Sci. Eng., A 528 (28), 8236 (2011).

    Article  CAS  Google Scholar 

  27. Y. Karpat: Temperature dependent flow softening of titanium alloy Ti6Al4V: An investigation using finite element simulation of machining. J. Mater. Process. Technol. 211 (4), 737 (2011).

    Article  CAS  Google Scholar 

  28. Y. Zhao, H.Z. Guo, Z.F. Shi, Z.K. Yao, and Y.Q. Zhang: Microstructure evolution of TA15 titanium alloy subjected to equal channel angular pressing and subsequent annealing at various temperatures. J. Mater. Process. Technol. 211 (8), 1364 (2011).

    Article  CAS  Google Scholar 

  29. X.H. Gong, Y. Wang, Y.M. Xia, P. Ge, and Y.Q. Zhao: Experimental studies on the dynamic tensile behavior of Ti–6Al–2Sn–Zr–3Mo–1Cr–2Nb–Si alloy with Widmanstatten microstructure at elevated temperatures. Mater. Sci. Eng., A 523 (1–2), 53 (2009).

    Article  Google Scholar 

  30. L. Li and N. Zhou: Experimental investigation of hot deep drawability of EW94 heat resistant alloy sheet. J. Aeronaut. Mater. 33 (5), 22 (2013).

    Google Scholar 

  31. R. Ebrahimi and N. Pardis: Determination of strain-hardening exponent using double compression test. Mater. Sci. Eng., A 518 (1–2), 56 (2009).

    Article  Google Scholar 

  32. J.H. Holloman: Tensile deformation. Trans. Metall. Soc. AIME 162, 268 (1945).

    Google Scholar 

  33. H.P. Stüwe and P. Les: Strain rate sensitivity of flow stress at large strains. Acta Mater. 46 (18), 6375 (1998).

    Article  Google Scholar 

  34. X. Ma, W.D. Zeng, F. Tian, Y.G. Zhou, and Y. Sun: Optimization of hot process parameters of Ti–6.7Al–2Sn–2.2Zr–2.1Mo–1W–0.2Si alloy with lamellar starting microstructure based on the processing map. Mater. Sci. Eng., A 545, 132 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This study was financially supported by the National Natural Science Foundation of China (No. 51205319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Guo, H., Yao, Z. et al. Strain rate sensitivity, temperature sensitivity, and strain hardening during the isothermal compression of BT25y alloy. Journal of Materials Research 31, 2863–2875 (2016). https://doi.org/10.1557/jmr.2016.294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.294

Navigation