Photoelectrocatalytic oxidation of phenol for water treatment using a BiVO4 thin-film photoanode

Abstract

The removal of organics by photoelectrocatalytic oxidation offers a viable option to remove the contaminants at low concentrations. In this paper, we propose a BiVO4 thin films synthesized via spray pyrolysis for photoelectrocatalyic oxidation of phenol with solar light. We compare the properties of BiVO4 with those of the commonly used photocatalyst TiO2. In addition, BiVO4 films with W gradient doping were fabricated and tested for improving the photocatalytic performance of BiVO4. X-ray diffraction, atomic force microscopy, incident photon to current efficiency and spectrophotometry have been conducted for BiVO4 films of different thicknesses, as well as for TiO2. The electrochemical impedance spectroscopy and dark conductivity measurements were conducted. Phenol removal has been measured for both the TiO2 and BiVO4 samples. The best performance was found to be for a 300 nm undoped BiVO4 film, being able to reduce the phenol concentration up to 30.0% of the initial concentration in four hours.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

References

  1. 1.

    V.V. Ranade and V.M. Bhandari: Industrial Wastewater Treatment, Recycling, and Reuse (Elsevier, Oxford, 2014).

    Google Scholar 

  2. 2.

    A. Mixa and C. Staudt: Membrane-based separation of phenol/water mixtures using ionically and covalently cross-linked ethylene–methacrylic acid copolymers. Int. J. Chem. Eng. 2008, 12 (2008).

    Article  CAS  Google Scholar 

  3. 3.

    B.H. Hameed and A.A. Rahman: Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater. 160, 576 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    R. Daghrir, P. Drogui, and D. Robert: Photoelectrocatalytic technologies for environmental applications. J. Photochem. Photobiol., A 238, 41 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    S. Pulkka, M. Martikainen, A. Bhatnagar, and M. Sillanpaa: Electrochemical methods for the removal of anionic contaminants from water—A review. Sep. Purif. Technol. 132, 252 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    M.A. Lazar, S. Varghese, and S.S. Nair: Photocatalytic water treatment by titanium dioxide: Recent updates. Catalysts 2, 572 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    S. Pasternak and Y. Paz: On the splitting and dissimilarity between photocatalytic water splitting and photocatalytic degradation of pollutants. ChemPhysChem 14, 2059 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    J.M. Kesselman, O. Weres, N.S. Lewis, and M.R. Hoffmann: Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2 electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways. J. Phys. Chem. B 101, 2637 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Xiaoli, S. Huixiang, and W. Dahui: Photoelectrocatalytic degradation of phenol using a TiO2/Ni thin-film electrode. Korean J. Chem. Eng. 20, 679 (2003).

    Article  Google Scholar 

  10. 10.

    J. Liao, S. Lin, L. Zhang, N. Pan, X. Cao, and J. Li: Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays. ACS Appl. Mater. Interfaces 4, 171 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    F. Liang and Y. Zhu: Enhancement of mineralization ability for phenol via synergetic effect of photoelectrocatalysis of g-C3N4 film. Appl. Catal., B 180, 324 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    H. Selcuk, J.J. Sene, and M.A. Anderson: Photoelectrocatalytic humic acid degradation kinetics and effect of pH, applied potential and inorganics ions. J. Chem. Technol. Biotechnol. 78, 979 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Bennani, A.S. El-Kalliny, P.W. Appel, and L.C. Rietveld: Enhanced solar light photoelectrocatalytic activity in water by anatase-to-rutile TiO2 transformation. J. Adv. Oxid. Technol. 17, 285–296 (2014).

    CAS  Google Scholar 

  14. 14.

    L. Liu and X. Chen: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 9890 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    J. Carey, J. Lawrence, and H. Tosine: Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol. 16, 697 (1976).

    CAS  Article  Google Scholar 

  16. 16.

    J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    A.N.S. Rao and V.T. Venkatarangaiah: Metal oxide-coated anodes in wastewater treatment. Environ. Sci. Pollut. Res. 21, 3197 (2014).

    Article  CAS  Google Scholar 

  18. 18.

    W. Smith and Y.P. Zhao: Enhanced photocatalytic activity by aligned WO3/TiO2 two-layer nanorod array. J. Phys. Chem. 112, 19635 (2008).

    CAS  Google Scholar 

  19. 19.

    W. Smith and Y.P. Zhao: Superior photocatalytic performance by vertically aligned core-shell TiO2/WO3 nanorod arrays. Catal. Commun. 10, 1117 (2010).

    Article  CAS  Google Scholar 

  20. 20.

    W. Smith, W. Ingram, and Y.P. Zhao: The scaling of the photocatalytic decay rate with the length of aligned TiO2 nanorod arrays. Chem. Phys. Lett. 479, 270–273 (2010).

    Article  CAS  Google Scholar 

  21. 21.

    H. Fakhouri, W. Smith, J. Pulpytel, A. Zolfaghati, H. Mortaheb, F. Meshikini, R. Jafari, and F. Arefi-Khonsari: Visible light water splitting and enhanced UV photocatalysis from nitrogen doped TiO2 thin films. Appl. Catal., B 144, 12 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    W. Smith, H. Fakhouri, S. Mori, J. Pulpytel, and F. Arefi-Khonsari: Oxidation kinetics of TiN films deposited by RF reacting sputtering at high and low pressure. J. Phys. Chem. C 116, 15855 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    W. Smith, H. Fakhouri, J. Pulpytel, and F. Arefi-Khansari: Control of the optical and crystalline properties of TiO2 in photoactive TiO2/TiN Bi-layer thin film stacks. J. Appl. Phys. 111, 024301 (2012).

    Article  CAS  Google Scholar 

  24. 24.

    T. Li, J. He, B. Peña, and C.P. Berlinguette: Curing BiVO4 photoanodes with ultraviolet light enhances photoelectrocatalysis. Angew. Chem., Int. Ed. 55, 1769 (2015).

    Article  CAS  Google Scholar 

  25. 25.

    X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    F.F. Abdi, L. Han, A. Smets, M. Zeman, B. Dam, and R.v.d. Krol: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate–silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013).

    Article  CAS  Google Scholar 

  27. 27.

    M. Shang, W. Wang, S. Sun, J. Ren, L. Zhou, and L. Zhang: Efficient visible light-induced photocatalytic degradation of contaminant by sprindle-like PANI/BiVO4. J. Phys. Chem. 113, 20228 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    L. Hou, L. Yang, J. Li, J. Tan, and C. Yuan: Efficient sunlight-induced methylene blue removal over one-dimensional mesoporous monoclinic BiVO4 nanorods. J. Anal. Methods Chem. 2012, 345247 (2012).

    Google Scholar 

  29. 29.

    F.F. Abdi, N. Firet, and R.v.d. Krol: Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. ChemCatChem 5, 490 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    G. Yang, R. Van Swaaij, H. Tan, O. Isabella, and M. Zeman: Modulated surface textured glass as substrate for high efficiency microcrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 133, 156 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    L. Han, F.F. Abdi, R.v.d. Krol, R. Liu, Z. Huang, H.J. Lewerenz, B. Dam, M. Zeman, and A.H. Smets: A 5.2% efficient water splitting device based on bismuth vanadate photoanode and thin film silicon solar cells. ChemSusChem 7, 2832 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    E. Grabowska and A.Z.J. Reszczynska: Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: A review. Water Res. 46, 5453 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    X. Wu, Y. Ling, L. Liu, and Z. Huang: Enhanced photoelectrocatalytic degradation of methylene blue on smooth TiO2 nanotube array and its impedance analysis. J. Electrochem. Soc. 156, K65 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    H. Beer: Improvements in or relating to electrodes for electrolysis. GB1, Patent 147442, 1969.

  35. 35.

    A.K. Datye, G. Riegel, J.R. Bolton, M. Huang, and M.R. Prairie: Microstructural characterization of a fumed titanium dioxide photocatalyst. J. Solid State Chem. 115, 236 (1995).

    CAS  Article  Google Scholar 

  36. 36.

    X.Z. Li, F.B. Li, C.M. Fan, and Y.P. Sun: Photoelectrocatalytic degradation of humic acid in aqueous solution using a TiO2/Ti mesh photoelectrode. Water Res. 36, 2215 (2002).

    CAS  Article  Google Scholar 

  37. 37.

    J. Tauc, R. Grigorovici, and A. Vancu: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15, 627 (1966).

    CAS  Article  Google Scholar 

  38. 38.

    A. Saranya, J. Pandiarajan, N. Jeyakumuran, and N. Prithivikumuran: Influence of annealing temperature and number of layers on the properties on nanocrystalline TiO2 thin films: Structural and optical investigation. Int. J. ChemTech Res. 6, 2237 (2014).

    CAS  Google Scholar 

  39. 39.

    H. Liu, X. Cao, G. Liu, Y. Wang, N. Zhang, T. Li, and R. Tough: Photoelectrocatalytic degradation of triclosan on TiO2 nanotube arrays and toxicity change. Chemosphere 93, 160 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    Y. Qin, Y. Li, Z. Tian, Y. Wu, and Y. Cui: Efficiently visible-light driven photoelectrocatalytic oxidation of As(III) at low positive biasing using Pt/TiO2 nanotube electrode. Nanoscale Res. Lett. 11, 32 (2016).

    Article  CAS  Google Scholar 

  41. 41.

    A.E. Segneanu, C. Orbeci, C. Lazau, P. Sfirloaga, P. Vlazan, C. Bandas, and I. Grozescu: INTECH (2013), [Online]. Available: http://www.intechopen.com/books/water-treatment/waste-water-treatment-methods [accessed 19 November 2015].

  42. 42.

    X. Zhu: Effects of pH, inorganic anions, and surfactants on the photocatalytic degradation of aqueous ammonia in graywater. Ph.D. Thesis, University of Oklahoma, USA, 2007.

  43. 43.

    X. Zhu, M.A. Nanny, and E.C. Buttler: Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite. J. Photochem. Photobiol., A 185, 289 (2007).

    CAS  Article  Google Scholar 

  44. 44.

    E. Grabowska, J. Reszczyńska, and A. Zaleska: Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: A review. Water Res. 46, 5453 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    K. Balaji, K. Reddaiah, T.M. Reddy, and S.R.J. Reddy: Voltammetric reduction behavior and electrode kinetics. Port. Electrochim. Acta 29, 177 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    C. Dumas, R. Basseguy, and A. Bergel: Electrochemical activity of geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim. Acta 53, 5235 (2008).

    CAS  Article  Google Scholar 

  47. 47.

    H.S. Park, B.H. Kim, H.S. Kim, H.J. Kim, G.T. Kim, I.S. Chang, Y.K. Park, and H.I. Chang: A novel electrochemically active and Fe(III) reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7, 297 (2001).

    CAS  Article  Google Scholar 

  48. 48.

    X. Yan, W. Li, A. Aberle, and S. Venkataraj: Surface texturing studies of bilayer transparent conductive oxide (TCO) structures as front electrode for thin-film silicon solar cells. J. Mater. Sci.: Mater. Electron. 26, 7049 (2015).

    CAS  Google Scholar 

  49. 49.

    S. Tokunaga, H. Kato, and A. Kudo: Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 13, 1624 (2001).

    Article  CAS  Google Scholar 

  50. 50.

    F.F. Abdi: Towards highly efficient bias-free solar water splitting. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2013.

  51. 51.

    M.K. Son, H. Seo, S.K. Kim, N.Y. Hong, B.M. Kim, S. Park, K. Prabakar, and H.J. Kim: Analysis on the light-scattering effect in dye-sensitized solar cell according to the TiO2 structural differences. Int. J. Photoenergy 2012, 480929 (2012).

    Google Scholar 

  52. 52.

    Y. Bennani, P. Appel, and L.C. Rietveld: Optimisation of parameters in a solar light-induced photoelectrocatalytic process with a TiO2/Ti composite electrode prepared by paint-thermal decomposition. J. Photochem. Photobiol., A 305, 83 (2015).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Ruud Hendrikx at the Department of Materials Science and Engineering of the Delft University of Technology is acknowledged for the x-ray analysis. Bartek Trzesniewski and Marco Valenti from the Materials for Energy Conversion and Storage (MECS) in TU Delft are acknowledged for the assistance in BiVO4 deposition and IPCE measurements.

This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organization for Scientific Research (NWO).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasmina Bennani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bennani, Y., Perez-Rodriguez, P., Alani, M.J. et al. Photoelectrocatalytic oxidation of phenol for water treatment using a BiVO4 thin-film photoanode. Journal of Materials Research 31, 2627–2639 (2016). https://doi.org/10.1557/jmr.2016.290

Download citation