Catalytic performance and SO2 tolerance of tetragonal-zirconia-based catalysts for low-temperature selective catalytic reduction


MnOx–CeO2/t-ZrO2 catalyst was prepared by impregnation of nanotetragonal zirconia. The NO conversion of 5 wt% MnOx–CeO2/t-ZrO2 catalyst was 68.1% at 100 °C while that of 30 wt% MnOx–CeO2/t-ZrO2 catalyst was 97.4%. The x-ray diffraction, Brunner–Emmet–Teller measurements (BET), and H2-TPR showed surface properties of the prepared catalysts were good for selective catalytic reduction reactions. X-ray photoelectron spectroscopy analysis indicated that Mn4+ and Ce4+ oxidation states were predominant on the surface of the catalyst and so was lattice oxygen which was conducive to Lewis acid sites. NH3-TPD test results demonstrated that Lewis acid sites are predominant on the surface of catalyst. The presence of SO2 reduced the catalyst activity. The realized conversion dramatically decreased to 47% from nearly 100% after 8 h. Characterization of fresh and spent catalysts indicated the deterioration of active component and deposition of NH4HSO4 or (NH4)2SO4 contribute to SO2 poisoning.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10


  1. 1.

    X-L. Tang, J-M. Hao, W-G. Xu, and J-H. Li: The United States and Europe NOx control policy for China’s reference. Chin. J. Catal. 27, 843 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Annual Statistic Report on Environment, Department of Pollution emission control, Ministry of Environment Protection of the People’s Republic of China, 2012, 02, 18.

  3. 3.

    G. Qi and R-T. Yang: Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supposed on titania. Appl. Catal., B 44, 217 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    J.A. Sullivan and J.A. Doherty: NH3 and urea in the selective catalytic reduction of NOx over oxide-supported copper catalysts. Appl. Catal., B 55, 185 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    Z-P. Zhu, Z-Y. Liu, H-X. Niu, S-J Liu, T-D. Hu, T.L, and Y-N. Xie: Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supposed vanadium oxide catalyst. J. Catal. 197, 6 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    M. Yoshikawa, A. Yasutake, and I. Mochida: Regeneration of initial activity of a pitch-based ACF for NO-NH3 reaction at ambient temperature. Appl. Catal., A 173, 239 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    G. Delahay, D. Valade, A. Guzmfin-Vargas, and B. Cop: Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods. Appl. Catal., B 55, 149 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    C. Fan, J. Xiang, S. Su, P-Y. Wang, L-S. Sun, S. Hu, and S-Y. Lei: The activity and characterization of MnOx–CeO2–ZrO2/γ-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3. Chem. Eng. J. 243 (2014).

  9. 9.

    Z-Y. Yan, J-F. Hu, and H. Xu: Denitrification property of catalyst CeO2/TiO2–ZrO2 with strong hydrothermal stability and sulfur tolerance. J. Chin. Soc. Power Eng. 31, 58 (2011).

    Google Scholar 

  10. 10.

    N. Takahashi, A. Suda, and I. Hachisuka: Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2–TiO2 mixed oxides. Appl. Catal., B 72, 187 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    B.M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, and J.-C. Volta: Structural characterization of CeO2–TiO2 and V2O5/CeO2–TiO2 catalysts by Raman and XPS techniques. J. Phys. Chem. B 107, 5162 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    Z-X. Song, N. Ping, Q-L. Zhang, H. Li, J-H. Zhang, Y-C. Wang, X. Liu, and Z-Z. Huang: Activity and hydrothermal stability of CeO2–ZrO2–WO3 for the selective catalytic reduction of NOx with NH3. J. Environ. Sci. 4, 42 (2015).

    Google Scholar 

  13. 13.

    B-X. Shen, Y-Y. Wang, F-M. Wang, and T. Liu: The effect of Ce–Zr on NH3-SCR activity over MnOx(0.6)/Ce0.5Zr0.5O2 at low temperature. Chem. Eng. J. 2, 236 (2014).

    Google Scholar 

  14. 14.

    W-Y. Zhen and C-D. Chen: The properties, uses and prospect of zirconium dioxide. Inorg. Chem. Ind. 32, 18 (2000).

    Google Scholar 

  15. 15.

    H. Guan, X-J. Gong, R. Liu, and L. Yang: Preparation of stable nanosized ZrO2 particles with different crystallographic structures. Chin. J. Mater. Res. 28, 139 (2014).

    CAS  Google Scholar 

  16. 16.

    R. Liu and Z-Q. Yang: Low-temperature catalytic reduction of NO over Fe–MnOx–CeO2/ZrO2 Catalyst. Environ. Sci. 33, 188 (2012).

    CAS  Google Scholar 

  17. 17.

    S.M. Sager, D.I. Kondarides, and X.E. Verykios: Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on y-Al2O3. Appl. Catal., B 103, 275 (2011).

    Article  Google Scholar 

  18. 18.

    X. Zhang, L-Y. Ji, S-C. Zhang, and W-S. Yang: Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. J. Power Sources 173, 1017–1023 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    D.A. Peña, B.S. Uphade, and P.G. Smirniotis: TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of no with NH3: I. Evaluation and characterization of first row transition metals. J. Catal. 221, 421–431 (2004).

    Article  Google Scholar 

  20. 20.

    J-L. Xie, D. Fang, F. He, J-F. Chen, Z-B. Fu, and X-L. Chen: Performance and mechanism about MnOx species included in MnOx/TiO2 catalysts for SCR at low temperature. Catal. Commun. 28, 77 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    B-J. Wu, X-Q. Liu, and S-G. Wang: Investigation and characterization on MnOx/TiO2 for low-temperature selective catalytic reduction of NOx with NH3. J. Combust. Sci. Technol. 14, 221 (2008).

    CAS  Google Scholar 

  22. 22.

    W.R. Thompson and J.E. Pembeaon: Characterization of octadecylsilane and stearic-acid layers on Al2O3 surfaces by raman-spectroscopy. Langmuir 11, 1720 (1995).

    CAS  Article  Google Scholar 

  23. 23.

    M. Takagi, T. Kawai, M. Soma, et al.: Mechanism of catalytic reaction between nitric oxide and ammonia on vanadium pentoxide in the presence of oxygen. J. Phys. Chem. 80, 430 (1976).

    CAS  Article  Google Scholar 

  24. 24.

    J. Yu, F. Guo, Y-L. Wang, J-H. Zhu, Y-Y. Liu, F-B. Su, S-Q. Gao, and G-W. Xu: Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Appl. Catal., B 95, 160 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Z-L. Wei, H-M. Li, X-Y. Zhang, S-H. Yan, Z. Lv, Y-Q. Chen, and M-C. Gong: Preparation and property investigation of CeO2–ZrO2–Al2O3 oxygen-storage compounds. J. Alloys Compd 455, 322 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    L-J. Liu, Y. Chen, and L-H. Dong: In situ FT-infrared investigation of CO or/and NO interaction with CuO/Ce0.67Zr0.33O2 catalysts. Appl. Catal., B 90, 105 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    Q-L. Zhang, C-T. Qiu, H-D. Xu, T. Lin, Z-E. Lin, M-C. Gong, and Y-Q. Chen: Low-temperature selective catalytic reduction of NO with NH3 over monolith catalyst of MnOx/CeO2–ZrO2–Al2O3. Catal. Today 175, 171 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    W-Z. Li, H. Huang, H-J. Li, W. Zhang, and H-C. Liu: Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation. Langmuir 24, 8358 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    J-H. Li, J-J. Chen, R. Ke, C-K. Luo, and J-M. Hao: Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts. Catal. Commun. 8, 1896 (2007).

    CAS  Article  Google Scholar 

Download references


This research was supported by the Jiangsu Provincial Environmental Protection Office Project (2013032) and a sponsored by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information



Corresponding author

Correspondence to Rong Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Ji, L., Xu, Y. et al. Catalytic performance and SO2 tolerance of tetragonal-zirconia-based catalysts for low-temperature selective catalytic reduction. Journal of Materials Research 31, 2590–2597 (2016).

Download citation