Calligraphic solar cells: acknowledging paper and pencil


We demonstrate fabrication and characterization of photovoltaic (PV) devices made using pencil, paper, and commonly available economical chemicals with a power conversion efficiency of ∼1.8%. The current collecting electrode of the device composed of multilayered graphene (MuLG) was hand-drawn on the cellulosic paper using an H2B pencil. CdSe quantum dots (QD) were used for charge generation, and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) as a bridging molecule to facilitate transfer of the photo-induced charges to the electrodes through MuLG. MuLG acted both as charge carrier and current collector electrode. The device fabrication and testing were accomplished in a wet lab under ambient conditions with minimum use of sophisticated instrumentation. The materials and devices were characterized using UV–visible, fluorescence, x-ray diffraction spectroscopy, and scanning and transmission electron microscopy. IV characteristics of the PV devices fabricated on paper and polyester transparency substrates were performed using a solar simulator (AM 1.5) under ambient wet laboratory conditions. The use of pencil and paper makes the device fabrication simple, environmentally responsible, and accessible to layperson thus opening a new window for low cost PV and opto-electronic devices.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    N.S. Lewis and D.G. Nocera: Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    H. Rodhe: A comparison of the contribution of various gases to the greenhouse effect. Science 248, 1217 (1990).

    CAS  Article  Google Scholar 

  3. 3.

    D.A. Stainforth, T. Aina, C. Christensen, M. Collins, N. Faull, D.J. Frame, J.A. Kettleborough, S. Knight, A. Martin, J.M. Murphy, and C. Piani: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433, 403 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    D.E. Carlson and C.R. Wronski: Amorphous silicon solar cell. Appl. Phys. Lett. 28, 671 (1976).

    CAS  Article  Google Scholar 

  5. 5.

    H. Keppner, J. Meier, P. Torres, D. Fischer, and A. Shah: Microcrystalline silicon and micromorph tandem solar cells. Appl. Phys. A: Mater. Sci. Process. 69, 169 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    N.S. Lewis: Toward cost-effective solar energy use. Science 315, 798 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    B. O’Regan and M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 353, 737 (1991).

    Article  Google Scholar 

  8. 8.

    E. Singh and H.S. Nalwa: Stability of graphene-based heterojunction solar cells. RSC Adv. 5, 73575 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    M. Bernardi, J. Lohrman, P.V. Kumar, A. Kirkeminde, N. Ferralis, J.C. Grossman, and S. Ren: Nanocarbon-based photovoltaics. ACS Nano 6, 8896 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, and B.H. Hong: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    CAS  Article  Google Scholar 

  12. 12.

    E. Singh and H.S. Nalwa: Graphene-based dye-sensitized solar cells: A review. Sci. Adv. Mater. 7, 1863 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, and F. Wei: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    E. Singh and H.S. Nalwa: Graphene-based bulk-heterojunction solar cells: A review. J. Nanosci. Nanotechnol. 15, 6237 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, and P.M. Ajayan: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 6337 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Wang, Y. Shao, D.W. Matson, J. Li, and Y. Lin: Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    L. Huang, Y. Huang, J. Liang, X. Wan, and Y. Chen: Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4, 675 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    N. Ruecha, R. Rangkupan, N. Rodthongkum, and O. Chailapakul: Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens. Bioelectron. 52, 13–19 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    F.Y. Kong, S.X. Gu, W.W. Li, T.T. Chen, Q. Xu, and W. Wang: A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosens. Bioelectron. 56, 77 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    L. Hu, H. Wu, and Y. Cui: Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl. Phys. Lett. 96, 183502 (2010).

    Article  CAS  Google Scholar 

  21. 21.

    G. Zheng, L. Hu, H. Wu, X. Xie, and Y. Cui: Paper supercapacitors by a solvent-free drawing method. Energy Environ. Sci. 4, 3368 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    X. Liang, Z. Xiaogan, and S.Y. Chou: Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7, 3840 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    V.V. Brus and P.D. Maryanchuk: Photosensitive Schottky-type heterojunctions prepared by the drawing of graphite films. Appl. Phys. Lett. 104, 173501 (2014).

    Article  CAS  Google Scholar 

  24. 24.

    Z. Fang, H. Zhu, Y. Yuan, D. Ha, S. Zhu, C. Preston, Q. Chen, Y. Li, X. Han, S. Lee, and G. Chen: Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14, 765 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Y. Fujisaki, H. Koga, Y. Nakajima, M. Nakata, H. Tsuji, T. Yamamoto, T. Kurita, M. Nogi, and N. Shimidzu: Transparent nanopaper-based flexible organic thin-film transistor array. Adv. Funct. Mater. 24, 1657 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    B. Wang and L.L. Kerr: Dye sensitized solar cells on paper substrates. Sol. Energy Mater. Sol. Cells 95, 2531 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    M.C. Barr, J.A. Rowehl, R.R. Lunt, J. Xu, A. Wang, C.M. Boyce, S.G. Im, V. Bulović, and K.K. Gleason: Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv. Mater. 23, 3500 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    N. Kurra and G.U. Kulkarni: Pencil-on-paper: Electronic devices. Lab Chip 13, 2866 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    J. Weaver, R. Zakeri, S. Aouadi, and P. Kohli: Synthesis and characterization of quantum dot–polymer composites. J. Mater. Chem. 19, 3198 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A.P. Alivisatos: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    I.M. Dharmadasa: Latest developments in CdTe, CuInGaSe2 and GaAs/AlGaAs thin film PV solar cells. Curr. Appl. Phys. 9, e2 (2009).

    Article  Google Scholar 

  32. 32.

    U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Gratzel: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 (1998).

    CAS  Article  Google Scholar 

  33. 33.

    S. Günes, H. Serap, and N.S. Sariciftci: Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324 (2007).

    Article  CAS  Google Scholar 

  34. 34.

    F.C. Krebs: Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 394 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    T.P. Chou, Q. Zhang, G.E. Fryxell, and G.Z. Cao: Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv. Mater. 19, 2588 (2007).

    CAS  Article  Google Scholar 

  36. 36.

    K.J. Reynolds, J.A. Barker, N.C. Greenham, R.H. Friend, and G.L. Frey: Inorganic solution-processed hole-injecting and electron-blocking layers in polymer light-emitting diodes. J. Appl. Phys. 92, 7556 (2002).

    CAS  Article  Google Scholar 

  37. 37.

    A.P. Alivisatos: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).

    CAS  Article  Google Scholar 

  38. 38.

    L. Brus: Quantum crystallites and nonlinear optics. Appl. Phys. A: Solids Surf. 53, 465 (1991).

    Article  Google Scholar 

  39. 39.

    D.F. Swinehart: The beer-lambert law. J. Chem. Educ. 39, 333 (1962).

    CAS  Article  Google Scholar 

  40. 40.

    W.W. Yu, L. Qu, W. Guo, and X. Peng: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    J. Sun and E.M. Goldys: Linear absorption and molar extinction coefficients in direct semiconductor quantum dots. J. Phys. Chem. C 112, 9261 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    B. Partoens and F.M. Peeters: From graphene to graphite: Electronic structure around the K point. Phys. Rev. B: Condens. Matter Mater. Phys. 74, 075404 (2006).

    Article  CAS  Google Scholar 

  43. 43.

    B. Xu and K.M. Poduska: Linking crystal structure with temperature-sensitive vibrational modes in calcium carbonate minerals. Phys. Chem. Chem. Phys. 16, 17634 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    R.J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood: Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    C.J. Garvey, I.H. Parker, and G.P. Simon: On the interpretation of x-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol. Chem. Phys. 206, 1568 (2005).

    CAS  Article  Google Scholar 

  46. 46.

    M.A. Rahman, J. Halfar, and R. Shinjo: X-ray diffraction is a promising tool to characterize coral skeletons. Adv. Mater. Phys. Chem. 3, 120 (2013).

    Article  Google Scholar 

  47. 47.

    J. Keizer: Nonlinear fluorescence quenching and the origin of positive curvature in Stern–Volmer plots. J. Am. Chem. Soc. 105, 1494 (1983).

    CAS  Article  Google Scholar 

  48. 48.

    J.E. Weaver, M.R. Dasari, A. Datar, S. Talapatra, and P. Kohli: Investigating photoinduced charge transfer in carbon Nanotube−Perylene−quantum dot hybrid nanocomposites. ACS Nano 4, 6883 (2010).

    CAS  Article  Google Scholar 

  49. 49.

    B. Pan, D. Cui, C.S. Ozkan, M. Ozkan, P. Xu, T. Huang, F. Liu, H. Chen, Q. Li, R. He, and F. Gao: Effects of carbon nanotubes on photoluminescence properties of quantum dots. J. Phys. Chem. C 112, 939 (2008).

    CAS  Article  Google Scholar 

  50. 50.

    S. Geyer, V.J. Porter, J.E. Halpert, T.S. Mentzel, M.A. Kastner, and M.G. Bawendi: Charge transport in mixed CdSe and CdTe colloidal nanocrystal films. Phys. Rev. B: Condens. Matter Mater. Phys. 82, 155201 (2010).

    Article  CAS  Google Scholar 

  51. 51.

    Y.X. Xu, K.X. Sheng, C. Li, and G.Q. Shi: Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    T. Stocker, A. Kohler, and R. Moos: Why does the electrical conductivity in PEDOT:PSS decrease with PSS content? A study combining thermoelectric measurements with impedance spectroscopy. J. Polym. Sci., Part B: Polym. Phys. 50, 976 (2012).

    Article  CAS  Google Scholar 

  53. 53.

    Y.J. Kim, C.E. Park, and D.S. Chung: Interface engineering of a highly sensitive solution processed organic photodiode. Phys. Chem. Chem. Phys. 16, 18472 (2014).

    CAS  Article  Google Scholar 

  54. 54.

    S. Baskoutas and A.F. Terzis: Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 99, 013708 (2006).

    Article  CAS  Google Scholar 

  55. 55.

    K. Tvrdy, P.A. Frantsuzov, and P.V. Kamat: Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. 108, 29 (2011).

    CAS  Article  Google Scholar 

  56. 56.

    J. Liu, W. Yang, Y. Li, L. Fan, and Y. Li: Electrochemical studies of the effects of the size, ligand and composition on the band structures of CdSe, CdTe and their alloy nanocrystals. Phys. Chem. Chem. Phys. 16, 4778 (2014).

    CAS  Article  Google Scholar 

  57. 57.

    A.M. Smith, A.M. Mohs, and S. Nie: Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 4, 56 (2009).

    CAS  Article  Google Scholar 

  58. 58.

    D.L. Klein, R. Roth, A.K. Lim, A. P Alivisatos, and P.L. McEuen: A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699 (1997).

    CAS  Article  Google Scholar 

  59. 59.

    E.D. Minot, F. Kelkensberg, M. Van Kouwen, J.A. Van Dam, L.P. Kouwenhoven, V. Zwiller, M.T. Borgström, O. Wunnicke, M.A. Verheijen, and E.P. Bakkers: Single quantum dot nanowire LEDs. Nano Lett. 7, 367 (2007).

    CAS  Article  Google Scholar 

  60. 60.

    I.L. Medintz, H.T. Uyeda, E.R. Goldman, and H. Mattoussi: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435 (2005).

    CAS  Article  Google Scholar 

  61. 61.

    W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos: Hybrid nanorod-polymer solar cells. Science 295, 2425 (2002).

    CAS  Article  Google Scholar 

  62. 62.

    W.M.H. Sachtler, G.J.H. Dorgelo, and A.A. Holscher: The work function of gold. Surf. Sci.: 5, 221 (1966).

    CAS  Article  Google Scholar 

  63. 63.

    T. Oku, A. Takeda, A. Nagata, T. Noma, A. Suzuki, and K. Kikuchi: Fabrication and characterization of fullerene-based bulk heterojunction solar cells with porphyrin, CuInS2, diamond and exciton-diffusion blocking layer. Energies 3, 671 (2010).

    CAS  Article  Google Scholar 

  64. 64.

    S. Tongay, T. Schumann, and A.F. Hebard: Graphite based Schottky diodes formed on Si, GaAs, and 4H-SiC substrates. Appl. Phys. Lett. 95, 222103 (2009).

    Article  CAS  Google Scholar 

  65. 65.

    Y.J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, and P. Kim: Tuning the graphene work function by electric field effect. Nano Lett. 9, 3430 (2009).

    CAS  Article  Google Scholar 

  66. 66.

    Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin: A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells. Nanoscale 3, 1477 (2011).

    CAS  Article  Google Scholar 

  67. 67.

    V.V. Brus, P.D. Maryanchuk, M.I. Ilashchuk, J. Rappich, I.S. Babichuk, and Z.D. Kovalyuk: Graphitic carbon/n-CdTe Schottky-type heterojunction solar cells prepared by electron-beam evaporation. Sol. Energy 112, 78 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    G.A. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, and P.J. Kelly: Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    CAS  Article  Google Scholar 

  69. 69.

    P.A. Khomyakov, G. Giovannetti, P.C. Rusu, G. Brocks, J. van den Brink, and P.J. Kelly: First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 195425 (2009).

    Article  CAS  Google Scholar 

  70. 70.

    A. Kyas, J. Fleischhauer, E. Steinmetz, and H. Wilhelmi: Investigations concerning the work function of doped graphite. Plasma Chem. Plasma Process. 13, 223 (1993).

    CAS  Article  Google Scholar 

  71. 71.

    J. Hölzl and F.K. Schulte: Work function of metals. In Solid Surface Physics, Vol. 85, G. Holer, ed. (Springer-Verlag, Berlin, 1979); p. 126.

    Google Scholar 

  72. 72.

    H. Kautsky: Quenching of luminescence by oxygen. Trans. Faraday Soc. 35, 216 (1939).

    CAS  Article  Google Scholar 

  73. 73.

    R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, and Ph. Avouris: Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001).

    CAS  Article  Google Scholar 

  74. 74.

    M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga: Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Appl. Phys. Lett. 79, 156 (2001).

    CAS  Article  Google Scholar 

Download references


We would like to acknowledge National Science Foundation (CHE 0748676), Office of Vice-Chancellor of Research, and Office of Sponsored Projects Administration (OSPA) at the Southern Illinois University at Carbondale (SIUC), and NIH (GM 106364) for partial financial support of this research. The Scanning Electron Microscope used in this work was purchased through a grant from National Science Foundation (CHE 0959568).

Author information



Corresponding author

Correspondence to Punit Kohli.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dasari, M., Rajasekaran, P.R., Iyer, R. et al. Calligraphic solar cells: acknowledging paper and pencil. Journal of Materials Research 31, 2578–2589 (2016).

Download citation