Electrospun polyacrylonitrile/magnetic Fe3O4–polyhedral oligomeric silsesquioxanes nanocomposite fibers with enhanced filter performance for electrets filter media

Abstract

Magnetic Fe3O4–polyhedral oligomeric silsesquioxanes (POSS) particles with Si-OH were prepared by hydrosilylation reaction between the Fe3O4–SiH and POSS with hydroxyl and vinyl groups. The magnetic Fe3O4–POSS particles were characterized by using transmission electron microscopy, scanning electron microscopy, Fourier transform infrared absorption spectroscopy, thermogravimetry, and vibrating sample magnetometry. The magnetic saturation value of Fe3O4–POSS particles was 18.77 emu/g. Polyacrylonitrile (PAN)/Fe3O4–POSS nanofibers mats were subsequently fabricated by electrospinning technique. The electret properties of PAN/Fe3O4–POSS nanofibers mats and their aerosol filtration property as electrets filter media were characterized. The stability of the surface potential was remarkably improved and the surface potential retention reached 50% for PAN/Fe3O4–POSS mats with 1 wt% Fe3O4–POSS. Compared with pure PAN, the charge retention of PAN/Fe3O4–POSS was increased by 21% and reached 52.40%. Moreover, the collection efficiency increased and the filter resistance decreased when the PAN nanofibers with Fe3O4–POSS were used as electrets filter media. Our study provided an effective method to prepare novel filter materials with high efficiency and low resistance.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
SCHEME 1

References

  1. 1.

    B.Y. Yeom, E. Shim, and B. Pourdeyhimi: Boehmite nanoparticles incorporated electrospun nylon-6 nanofiber web for new electret filter media. Macromol. Res. 18, 884–890 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    W.W.F. Leung, C.H. Hung, and P.T. Yuen: Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Sep. Purif. Technol. 71, 30–37 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    K. Ikezaki and Y. Murata: Electret properties of ethylene–propylene random co-polymer. J. Electrost. 67, 407–411 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    M. Nifuku, Y. Zhou, A. Kisiel, T. Kobayashi, and H. Katoh: Electret properties of polypropylene fabrics. J. Electrost. 51–52, 232–238 (2001).

    Google Scholar 

  5. 5.

    D. Zhang, A.B. Karki, D. Rutman, D.P. Young, A. Wang, D. Cocke, T.H. Ho, and Z. Guo: Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis. Polymer 50, 4189–4198 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    S.H. Park, Y.S. Ryu, and S.H. Kim: Effect of modified silica nanoparticle on the properties of bio-based polyurethane ultrafine fibers. J. Mater. Sci. 50, 1760–1769 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    E. Korina, O. Stoilova, N. Manolova, and I. Rashkov: Poly(3-hydroxybutyrate)-based hybrid materials with photocatalytic and magnetic properties prepared by electrospinning and electrospraying. J. Mater. Sci. 49, 2144–2153 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    J. Hillenbrand, T. Motz, G.M. Sessler, X. Zhang, N. Behrendt, C. Salis-Soglio, D.P. Erhard, V. Altstädt, and H.W. Schmidt: The effect of additives on charge decay in electron-beam charged polypropylene films. J. Phys. D: Appl. Phys. 42, 065410 (2009).

    Article  CAS  Google Scholar 

  9. 9.

    N. Mohmeyer, N. Behrendt, X.Q. Zhang, P. Smith, V. Altstädt, and G.M. Sessler: Additives to improve the electret properties of isotactic polypropylene. Polymer 48, 1612–1619 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    N. Mohmeyer, H. Schmidt, P.M. Kristiansen, and V. Altsta: Influence of chemical structure and solubility of bisamide additives on the nucleation of isotactic polypropylene and the improvement of its charge storage properties. Macromolecules 39, 5760–5767 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    X.Y. Song, S.Z. Zhou, Y.F. Wang, W.M. Kang, and B.W. Cheng: Mechanical and electret properties of polypropylene unwoven fabrics reinforced with POSS for electret filter materials. J. Polym. Res. 19, 9812 (2012).

    Article  Google Scholar 

  12. 12.

    J.X. Song, G.X. Chen, G. Wu, C.H. Cai, P.G. Liu, and Q.F. Li: Thermal and dynamic mechanical properties of epoxy resin/poly(urethane-imide)/polyhedral oligomeric silsesquioxane nanocomposites. Macromol. Rapid. Comm. 22, 2069–2074 (2011).

    CAS  Google Scholar 

  13. 13.

    J.X. Song, J.H. Jeon, K. Oh, and K.C. Park: Electro-active polymer actuator based on sulfonated polyimide with highly conductive silver electrodes via self-metallization. Appl. Surf. Sci. 32, 1583–1587 (2011).

    CAS  Google Scholar 

  14. 14.

    M. Ozmen, K. Can, G. Arslan, A. Tor, Y. Cengeloglu, and M. Ersoz: Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Desalination 254, 162–169 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    B. Du, A. Mei, P. Tao, B. Zhao, Z. Cao, J. Nie, J. Xu, and Z. Fan: Poly[N-isopropylacrylamide-co-3-(trimethoxysilyl)-propylmethacrylate] coated aqueous. J. Phys. Chem. C 113, 10090–10096 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    H. Zhang and G. Zhu: One-step hydrothermal synthesis of magnetic Fe3O4 nanoparticles immobilized on polyamide fabric. Appl. Surf. Sci. 258, 4952–4959 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    X. Ye, T. Liu, Q. Li, H. Liu, and Z. Wu: Comparison of strontium and calcium adsorption onto composite magnetic particles derived from Fe3O4 and bis(trimethoxysilylpropyl)amine. Colloids Surf., A 330, 21–27 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    J. Ren, M. Jia, T. Ren, W. Yuan, and Q. Tan: Preparation and characterization of PNIPAAm-b-PLA/Fe3O4 thermo-responsive and magnetic composite micelles. Mater. Lett. 62, 4425–4427 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Zhu, Y. Fang, and S. Kaskel: Folate-conjugated Fe3O4@SiO2 hollow mesoporous spheres for targeted anticancer drug. J. Phys. Chem. C 114, 16382–16388 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    Z.H. Wang, B. Shenb, Z. Aihuaa, and N. Hea: Synthesis of Pd/Fe3O4 nanoparticle-based catalyst for the cross-coupling of acrylic acid with iodobenzene. Chem. Eng. J. 113, 27–34 (2005).

    Article  CAS  Google Scholar 

  21. 21.

    W. Sun, Q. Li, S. Gao, and J.K. Shang: Monometallic Pd/Fe3O4 catalyst for denitrification of water. Appl. Catal., B 125, 1–9 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    J. Qu, G. Liu, Y. Wang, and R. Hong: Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv. Powder Technol. 21, 461–467 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    M. Wang, N. Wang, H. Tang, M. Cao, Y. She, and L. Zhu: Surface modification of nano-Fe3O4 with EDTA and its use in H2O2 activation for removing organic pollutants. Catal. Sci. Technol. 2, 187 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    S. Xuan, Y.J. Wang, K.C. Leung, and K. Shu: Synthesis of Fe3O4@polyaniline core/shell microspheres with well-defined blackberry-like morphology. J. Phys. Chem. C 112, 18804–18809 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    L. Chen, Z. Xu, H. Dai, and S. Zhang: Facile synthesis and magnetic properties of monodisperse Fe3O4/silica nanocomposite microspheres with embedded structures via a direct solution-based route. J. Alloys Compd. 497, 221–227 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Z. Lu, J. Dai, X. Song, G. Wang, and W. Yang: Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids Surf., A 317, 450–456 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    X. Zhang, H. Niu, Y. Pan, Y. Shi, and Y. Cai: Modifying the surface of Fe3O4/SiO2 magnetic nanoparticles with C18/NH2 mixed group to get an efficient sorbent for anionic organic pollutants. J. Colloid Interface Sci. 362, 107–112 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    J.H. Moon, A.R. Kath, S. Pandian, S.M. Kolake, and S. Han: Polyamide–POSS hybrid membranes for seawater desalination: Effect of POSS inclusion on membrane properties. J. Membr. Sci. 461, 89–95 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    J. Duan, E. Litwiller, and I. Pinnau: Preparation and water desalination properties of POSS–polyamide nanocomposite reverse osmosis membranes. J. Membr. Sci. 473, 157–164 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    E. Markovic, S. Clarke, J. Matisons, and G.P. Simon: Synthesis of POSS–methyl methacrylate-based cross-linked hybrid. Macromolecules 41, 1685–1692 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    A. Gądek and T. Szymańska-Buzar: Activation of the SiH bond of silanes in photochemical reactions with W(CO)6: Hydrosilylation of ketones and dehydrosilylation of alcohol by H2SiPh2. Polyhedron 25, 1441–1448 (2006).

    Article  CAS  Google Scholar 

  32. 32.

    U. Böhme: Hydrosilylation vs. [2 + 2]-cycloaddition: A. theoretical study with iron, and ruthenium complexes. J. Organomet. Chem. 691, 4400–4410 (2006).

    Article  CAS  Google Scholar 

  33. 33.

    N. Taccardi, M. Fekete, M.E. Berger, V. Stanjek, P.S. Schulz, and P. Wasserscheid: Catalyst recycling in monophasic Pt-catalyzed hydrosilylation reactions using ionic liquids. Appl. Catal., A 399, 69–74 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    C.M. Downing and H.H. Kung: Diethyl sulfide stabilization of platinum-complex catalysts for hydrosilylation of olefins. Catal. Commun. 12, 1166–1169 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    R. Cano, M. Yus, and D.J. Ramón: Impregnated platinum on magnetite as an efficient, fast, and recyclable catalyst for the hydrosilylation of alkynes. ACS Catal. 2, 1070–1078 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, and X. Deng: Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia Eng. 27, 632–637 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    R. Misra, B.X. Fu, and S.E. Morgan: Surface energetics, dispersion, and nanotribomechanical behavior of POSS/PP hybrid nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 45, 2441–2455 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    K. Liang, G. Li, H. Toghiani, J.H. Koo, and C.U. Pittman: Cyanate ester polyhedral oligomeric silsesquioxane (POSS) nanocomposites: Synthesis, and characterization. Chem. Mater. 18, 301–312 (2006).

    CAS  Article  Google Scholar 

  39. 39.

    M. Hoyos, A. Fina, F. Carniatoc, M. Pratodand, and O. Monticelli: Novel hybrid systems based on poly(propylene-g-maleic anhydride) and Ti–POSS by direct reactive blending. Polym. Degrad. Stab. 96, 1793–1798 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    Z. Lei, Y. Li, and X. Wei: Novel hybrid systems based on poly(propylene-g-maleic anhydride) and Ti–POSS by direct reactive blending. J. Solid State Chem. 181, 480–486 (2008).

    CAS  Article  Google Scholar 

  41. 41.

    F. Yan, X. Zheng, Z. Sun, and A. Zhao: Effect of surface modification of Fe3O4 nanoparticles on the preparation of Fe3O4/polystyrene composite particles via miniemulsion polymerization. Polym. Bull. 68, 1305–1314 (2011).

    Article  CAS  Google Scholar 

  42. 42.

    J. Wu, Q. Ge, and P.T. Mather: PEG–POSS multiblock Polyurethanes: Synthesis, characterization, and hydrogel formation. Macromolecules 43, 7637–7649 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    Y. Zhu, E. Kockrick, T. Ikoma, N. Hanagata, and S. Kaskel: An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous. Chem. Mater. 21, 2547–2553 (2009).

    CAS  Article  Google Scholar 

  44. 44.

    Y.P. He, S.Q. Wang, C.R. Li, Y.M. Miao, Z.Y. Wu, and B.S. Zou: Synthesis and characterization of functionalized silica-coated Fe3O4 superparamagnetic nanocrystals for biological applications. J. Phys. D: Appl. Phys. 38, 1342–1350 (2005).

    CAS  Article  Google Scholar 

  45. 45.

    S. Qin, L. Wang, X. Zhang, and G. Su: Grafting poly(ethylene glycol)monomethacrylate onto Fe3O4 nanoparticles to resist nonspecific protein adsorption. Appl. Surf. Sci. 257, 731–735 (2010).

    CAS  Article  Google Scholar 

  46. 46.

    J. Hillenbrand, N. Behrendt, V. Altstädt, H.W. Schmidt, and G.M. Sessler: Electret properties of biaxially stretched polypropylene films containing various additives. J. Phys. D: Appl. Phys. 39, 535 (2006).

    CAS  Article  Google Scholar 

  47. 47.

    E. Schweers and F. Loffler: Realistic modelling of the behaviour of fibrous filters through consideration of filter structure. Powder Technol. 80, 191–206 (1994).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of National Natural Science Foundation (31371014), the Tianjin Research Program of Application Foundation and Advanced Technology (13JCZDJC32500), and National Key Technology R&D Program (2011BAE10B01).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Xing.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, X., Cheng, G., Cheng, B. et al. Electrospun polyacrylonitrile/magnetic Fe3O4–polyhedral oligomeric silsesquioxanes nanocomposite fibers with enhanced filter performance for electrets filter media. Journal of Materials Research 31, 2662–2671 (2016). https://doi.org/10.1557/jmr.2016.271

Download citation