Synthesis of boron carbide nanoparticles via spray pyrolysis

Abstract

A continuous process was developed to synthesize submicron boron carbide particles from boric acid and sucrose-based precursor solutions using a home-made spray pyrolysis system. A control set of samples was also prepared for comparison purposes of the microstructure and morphology of the ones synthesized via the spray pyrolysis method. Moreover, nickel nitrate was used in a precursor solution to investigate its catalyst effects on the reaction kinetics of boron carbide formation. The boron carbide phase was observed in the particles synthesized with spray pyrolysis at a reactor temperature of 1550 °C. The average particle size was approximately 0.46 µm. No effect of nickel additions was observed as a catalyst in boron carbide formation. Computational fluid dynamics software was used to model and simulate the experimental system. Simulation results provided information about the residence time and the temperature distribution along the tube reactor.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17
FIG. 18
FIG. 19

References

  1. 1.

    O.P. Hugh: Handbook of Refractory Carbides and Nitrides Properties, Characteristics, Processing and Applications (Noyes Publications, New Jersey, 1996); p. 118.

    Google Scholar 

  2. 2.

    A.K. Suri, C. Subramanian, J.K. Sonber, and T.S.R.Ch. Murthy: Synthesis and consolidation of boron carbide: A review. Int. Mater. Rev. 55, 4 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    T.L. Aselage, D. Emin, S.S. McCready, and R.V. Duncan: Large enhancement of boron carbides’ Seebeck coefficients through vibrational softening. Phys. Rev. Lett. 81, 2316 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    T.L. Aselage, D. Emin, and S.S. McCready: Conductivities and seebeck coefficients of boron carbides: Softening bipolaron hopping. Phys. Rev. B. 64, 054302 (2001).

    Article  CAS  Google Scholar 

  5. 5.

    D. Emin and T.L. Aselage: A proposed boron-carbide-based solid-state neutron detector. J. Appl. Phys. 97, 013529 (2005).

    Article  CAS  Google Scholar 

  6. 6.

    Z. Guan, T. Gutu, J. Yang, Y. Yang, A.A. Zinn, D. Li, and T.T. Xu: Boron carbide nanowires: Low temperature synthesis and structural and thermal conductivity characterization. J. Mater. Chem. 22, 9853 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    C. Wood, D. Emin, and P.E. Gray: Thermal conductivity behavior of boron carbides. Phys. Rev. B. 31, 6811 (1985).

    CAS  Article  Google Scholar 

  8. 8.

    D. Emin: Unusual properties of icosahedral boron-rich solids. J. Solid State Chem. 179, 2791 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    C. Wood: Boron carbides as high temperature thermoelectric materials. In Boron Rich Solids, D. Emin, T. Aselage, C.L. Beckel, I.A. Howard, and C. Wood eds.; AIP Conf. Proc 140, American Institute of Physics: New York, 1986; p. 362.

    Google Scholar 

  10. 10.

    T.L. Aselage: In Mater. Res. Soc. Symp. Proc. (San Francisco, CA, 1991); p. 145.

  11. 11.

    H. Werheit: In 25th Int. Conf. Thermoelectr. (Vienna, Austria, 2006); p. 159.

  12. 12.

    C. Wood: Materials for thermoelectric energy conversion. Rep. Prog. Phys. 51, 459 (1988).

    CAS  Article  Google Scholar 

  13. 13.

    X. Du, Z. Zhang, Y. Wang, J. Wang, W. Wang, H. Wang, and Z. Fu: Hot-pressing kinetics and densification mechanisms of boron carbide. J. Am. Ceram. Soc. 98, 1400 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    K.A. Schwetz and G.W. Grellner: The influence of carbon on the microstructure and mechanical properties of sintered boron carbide. J. Less-Common Met. 82, 37 (1981).

    CAS  Article  Google Scholar 

  15. 15.

    C. Greskovich and L.H. Rosolowski: Sintering of covalent solids. J. Am. Ceram. Soc. 59, 336 (1976).

    CAS  Article  Google Scholar 

  16. 16.

    S.L. Dole and S. Prochazka: Densification and microstructure development in boron carbide. Ceram. Eng. Sci. Proc. 6, 1151 (1985).

    CAS  Article  Google Scholar 

  17. 17.

    S.L. Dole, S. Prochazka, and R.H. Doremus: Microstructural coarsening during sintering of boron carbide. J. Am. Ceram. Soc. 72, 958 (1989).

    CAS  Article  Google Scholar 

  18. 18.

    P. Larsson, N. Axen, and S. Hogmark: Improvements of the microstructure and erosion resistance of boron carbide with additives. J. Mater. Sci. 35, 3433 (2000).

    CAS  Article  Google Scholar 

  19. 19.

    F. Thevenot: Boron carbide-a comprehensive review. J. Eur. Ceram. Soc. 6, 205 (1990).

    CAS  Article  Google Scholar 

  20. 20.

    H. Lee and R.F. Speyer: Pressureless sintering of boron carbide. J. Am. Ceram. Soc. 86, 1468 (1990).

    Article  Google Scholar 

  21. 21.

    T.K. Roy, C. Subramanian, and A.K. Suri: Pressureless sintering of boron carbide. Ceram. Int. 32, 227 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    X. Li, D. Jiang, J. Zhang, Q. Lin, Z. Chen, and Z. Huang: Pressureless sintering of boron carbide with Cr3C2 as sintering additive. J. Eur. Ceram. Soc. 34, 1073 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    J. Yin, Z. Huang, X. Liu, Z. Zhang, and D. Jiang: Microstructure, mechanical and thermal properties of in situ toughened boron carbide-based ceramic composites codoped with tungsten carbide and pyrolytic carbon. J. Eur. Ceram. Soc. 33, 1647 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    D. Xian-Wu, Z. Zhi-Xiao, W. Wei-Min, F. Zheng-Yi, and W. Hao: Effect of particle size on densification and properties of hot-pressed boron carbide. J. Inorg. Mater. 28, 1062 (2013).

    Article  CAS  Google Scholar 

  25. 25.

    I.T. Ostapenko, V.V. Slezov, R.V. Tarasov, N.F. Kartsev, and V.P. Podtykan: Densification of boron carbide powder during hot pressing. Sov. Powder Metall. Met. Ceram. 18, 312 (1979).

    Google Scholar 

  26. 26.

    B.Y. Yin and L.S. Wang: Study on physical properties of hot-pressing sintering B4C ceramic. Atom Energy Sci. Technol. 38, 429 (2004).

    CAS  Google Scholar 

  27. 27.

    R. Angers and M. Beauvy: Hot-Pressing of boron carbide. Ceram. Int. 10, 49 (1983).

    Article  Google Scholar 

  28. 28.

    X. Yue, B. Chen, J. Zhao, W. Wang, and H. Ru: Microstructures and properties of B4C ceramics prepared by hot-pressing method. Rare Met. Mater. Eng. 40, 533 (2011).

    Google Scholar 

  29. 29.

    M. Mashhadi, E. Taheri-Nassaj, and V.M. Sglavo: Pressureless sintering of boron carbide. Ceram. Int. 36, 151 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    S. Yamada, K. Hirao, Y. Yamauchi, and S. Kanzaki: Mechanical and electrical properties of B4C–CrB2 ceramics fabricated by liquid phase sintering. Ceram. Int. 29, 299 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    L. Levin, N. Frage, and M.P. Dariel: Novel approach for the preparation of B4C-based cermets. Int. J. Refract. Met. Hard Mater. 18, 131 (2000).

    CAS  Article  Google Scholar 

  32. 32.

    A. Goldstein, Y. Geffen, and A. Goldenberg: Boron carbide–zirconium boride in situ composites by the reactive pressureless sintering of boron carbide zirconia mixtures. J. Am. Ceram. Soc. 84, 642 (2001).

    CAS  Article  Google Scholar 

  33. 33.

    Z. Zakhariev and D. Radev: Properties of polycrystalline boron carbide sintered in the presence of W2B5 without pressing. J. Mater. Sci. Lett. 7, 695 (1988).

    CAS  Article  Google Scholar 

  34. 34.

    R. Ruh, M. Kearns, A. Zangvil, and Y. Xu: Phase and property studies of boron carbide–boron nitride composites. J. Am. Ceram. Soc. 75, 864 (1992).

    CAS  Article  Google Scholar 

  35. 35.

    S. Tuffe, J. Dubois, G. Fantozzi, and G. Barbier: Densification, microstructure and mechanical properties of TiB2–B4C based composites. Int. J. Refract. Met. Hard Mater. 14, 305 (1996).

    CAS  Article  Google Scholar 

  36. 36.

    V. Skorokhod and V.D. Krstic: High strength-high toughness B4C–TiB2 composites. J. Mater. Sci. Lett. 19, 237 (2000).

    CAS  Article  Google Scholar 

  37. 37.

    M. Mashhadi, E. Taheri-Nassaj, V.M. Sglavo, H. Sarpoolaky, and N. Ehsani: Effect of Al addition on pressureless sintering of B4C. Ceram. Int. 35, 831 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    H.W. Kim, Y.H. Koh, and H.E. Kim: Densification and mechanical properties of B4C with Al2O3 as a sintering additives. J. Am. Ceram. Soc. 83 (11), 2363 (2000).

    Google Scholar 

  39. 39.

    S. Hayun, S. Kalabukhov, V. Ezersky, M.P. Dariel, and N. Frage: Microstructural characterization of spark plasma sintered boron carbide ceramics. Ceram. Int. 36, 451 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    A. Alizadeh, E. Taheri-Nassaja, and N. Ehsani: Synthesis of boron carbide powder by a carbothermic reduction method. J. Eur. Ceram. Soc. 24, 3227 (2004).

    CAS  Article  Google Scholar 

  41. 41.

    I. Yanase, R. Ogawara, and H. Kobayashi: Synthesis of boron carbide powder from polyvinyl borate precursor. Mater. Lett. 63, 91 (2009).

    CAS  Article  Google Scholar 

  42. 42.

    D.T. Welna, J.D. Bender, X. Wei, L.G. Sneddon, and H.R. Allcock: Preparation of boron-carbide/carbon nanofibers from a poly(norbornenyldecaborane) single-source precursor via electrostatic spinning. Adv. Mater. 7, 859 (2005).

    Article  CAS  Google Scholar 

  43. 43.

    A.M. Hadian and J.A. Bigdeloo: The effect of time, temperature and composition on boron carbide synthesis by sol–gel method. J. Mater. Eng. Perform. 17, 44 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    C. Ergun and S. Yilmaz: Patent No: Wo 2009/070131 A2, 2009.

  45. 45.

    E. Cakir, C. Ergun, F.C. Sahin, and I. Erden: In situ synthesis of B4C/TiB2 composites from low cost sugar based precursor. Defect Diffus. Forum 297–301, 52 (2010).

    Article  CAS  Google Scholar 

  46. 46.

    B.X. Tao, L. Dong, X. Wang, W. Zhang, B.J. Nelson, and X. Li: B4C-nanowires/carbon-microfiber hybrid structures and composites from cotton t-shirts. Adv. Mater. 22, 2055 (2010).

    CAS  Article  Google Scholar 

  47. 47.

    G.L. Messing, S.C. Zhang, and G.V. Jayanthi: Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 76, 2707 (1993).

    CAS  Article  Google Scholar 

  48. 48.

    B.K. Ozcelik and C. Ergun: Synthesis of ZnO nanoparticles by an aerosol process. Ceram. Int. 40, 7107 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    B.K. Ozcelik and C. Ergun: Synthesis and characterization of iron oxide particles using spray pyrolysis technique. Ceram. Int. 41, 1994 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    C. Ergun and B.K. Ozcelik: Effect of Ni on the synthesize boron carbide via aerosol method. Presented at the TMS 2015 Orlando FL, USA, 2015.

  51. 51.

    B.K. Ozcelik and C. Ergun: Boronated carbon and boron carbide synthesize via aerosol method. Presented at the Mater Sci Technol-14, Pittsburgh, USA, 2014.

  52. 52.

    B.K. Ozcelik, C. Ergun, and O. Dulger: Synthesis and characterization of ZnO nanoparticles formed by spray pyrolysis process. Presented at the Int. Conference on Composites or Nano Eng ICCE-21, Tenerife, Spain, 2013.

  53. 53.

    I.W. Lenggoro, T. Hata, F. Iskandar, M.M. Lunden, and K. Okuyama: An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. J. Mater. Res. 15, 733 (2000).

    CAS  Article  Google Scholar 

  54. 54.

    I.W. Lenggoroa, Y. Itoha, N. Iidab, and K. Okuyama: Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis. Mater. Res. Bull. 38, 1819 (2003).

    Article  CAS  Google Scholar 

  55. 55.

    C-Y. Chiang, K. Aroh, and S.H. Ehrman: Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting-part I: CuO nanoparticle preparation. Int. J. Hydrogen Energy 37, 4871 (2012).

    CAS  Article  Google Scholar 

  56. 56.

    C.Y. Chen, T.K. Tseng, S.C. Tsai, C.K. Lin, and H.M. Lin: Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis. Ceram. Int. 34, 409 (2008).

    CAS  Article  Google Scholar 

  57. 57.

    M. Eslamian and N. Ashgriz: Effect of precursor, ambient pressure and temperature on the morphology, crystallinity and decomposition of powders prepared by spray pyrolysis and drying. Powder Technol. 167, 149 (2006).

    CAS  Article  Google Scholar 

  58. 58.

    J.S. Cho and S-H. Rhee: Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol. J. Eur. Ceram. Soc. 33, 233 (2013).

    CAS  Article  Google Scholar 

  59. 59.

    K.C. Pingali, D.A. Rockstraw, and S. Deng: Silver nanoparticles from ultrasonic spray pyrolysis of aqueous silver nitrate. Aerosol Sci. Technol. 39, 1010 (2005).

    CAS  Article  Google Scholar 

  60. 60.

    T.D. Xiao, K.E. Gonsalves, P.R. Strutt, and P.G. Klemens: Synthesis of Si(N,C) nanostructured powders from an organometallic aerosol using a hot-wall reactor. J. Mater. Sci. 28, 1334 (1993).

    CAS  Article  Google Scholar 

  61. 61.

    H. Yoshida, H. Deguchi, M. Kawano, K. Hashino, T. Inagaki, H. Ijichi, M. Horiuchi, K. Kawahara, and S. Suda: Study on pyrolysing behavior of NiO–SDC composite particles prepared by spray pyrolysis technique. Solid State Ionics 178, 399 (2007).

    CAS  Article  Google Scholar 

  62. 62.

    S-Y. Yang and S-G. Kim: Characterization of silver and silver/nickel composite particles prepared by spray pyrolysis. Powder Technol. 146, 185 (2004).

    CAS  Article  Google Scholar 

  63. 63.

    M.T. Swihart: Vapor-phase synthesis of nanoparticles. Curr. Opinion Colloid and Interface Sci. 8, 127 (2003).

    CAS  Article  Google Scholar 

  64. 64.

    S.E. Pratsinis, G. Skillas, A. Maisels, and T.T. Kodas: Manufacturing of materials by aerosol processes. In Aerosol Measurement: Principles and Techniques, And Applications, P. Kulkarni, P.A. Baron, and K. Willeke, eds. (John Wiley & Sons, Hoboken, 2011); pp. 751–770.

    Google Scholar 

  65. 65.

    J.W. Olesik, J.A. Kinzer, and B. Harkleroad: Inductively coupled plasma optical emission spectrometry using nebulizers with widely different sample consumption rates. Anal. Chem. 66, 2022 (1994).

    CAS  Article  Google Scholar 

  66. 66.

    J.A. Burgener: Enhanced parallel path nebulizer with a large range of flow rates. US Patent: 6634572, 2003.

  67. 67.

    S. Augagneur, B. Medina, J. Szpunar, and R.J. Lobinski: Determination of rare earth elements in wine by inductively coupled plasma mass spectrometry using a microconcentric nebulizer. J. Anal. At. Spectrom. 11, 713 (1996).

    CAS  Article  Google Scholar 

  68. 68.

    Y. Liu, V. Lopez-Avila, J.J. Zhu, D.R. Wiederin, and W.F. Beckert: Capillary electrophoresis coupled on-line with inductively coupled plasma mass spectrometry for elemental speciation. Anal. Chem. 67, 2020 (1995).

    Article  Google Scholar 

  69. 69.

    L. Wang, S.W. May, R.F. Browner, and S.H. Pollock: Low-flow interface for liquid chromatography–inductively coupled plasma mass spectrometry speciation using an oscillating capillary nebulizer. J. Anal. At. Spectrom. 11, 1137 (1996).

    Article  Google Scholar 

  70. 70.

    B.L. Sharp: Pneumatic nebulizers and spray chambers for inductively coupled plasma spectrometry. A review. Part 2. Spray chambers. J. Anal. At. Spectrom. 3, 939 (1988).

    Article  Google Scholar 

  71. 71.

    S.D. Burke and R.L. Danheiser: Handbook of Reagents for Organic Synthesis, Oxidizing and Reducing Agents (John Wiley & Sons, Chicester, 1999); p. 246.

    Google Scholar 

  72. 72.

    J.L. Todoli and J.M. Mermet: Liquid Sample Introduction in ICP Spectrometry, 1st ed. (Elsevier, Amsterdam, 2008).

    Google Scholar 

  73. 73.

    J.L. Todoli and J.M. Mermet: Effect of the spray chamber design on steady and transient acid interferences in inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom. 15, 863 (2000).

    CAS  Article  Google Scholar 

  74. 74.

    ANSYS Inc.: Ansys Fluent 12.0 User’s Guide, 2009.

  75. 75.

    M.I. Saidaminov, N.V. Maksimova, and V.V. Avdeev: Expandable graphite modification by boric acid. J. Mater. Res. 27, 1054 (2012).

    CAS  Article  Google Scholar 

  76. 76.

    A.K. Khanra: Production of boron carbide powder by carbothermal synthesis of gel material. Bull. Mater. Sci. 30, 93 (2007).

    CAS  Article  Google Scholar 

  77. 77.

    M. Kakiage, Y. Tominaga, I. Yanase, and H. Kobayashi: Synthesis of boron carbide powder in relation to composition and structural homogeneity of precursor using condensed boric acid–polyol product. Powder Technol. 221, 257 (2012).

    CAS  Article  Google Scholar 

  78. 78.

    T.R. Pilladi, K. Ananthasivan, S. Anthonysamy, and V. Ganesan: Synthesis of nanocrystalline boron carbide from boric acid–sucrose gel precursor. J. Mater. Sci. 47, 1710 (2012).

    CAS  Article  Google Scholar 

  79. 79.

    S. Mondal and A.K. Banthia: Low temperature synthetic route for boron carbide. J. Eur. Ceram. Soc. 25, 287 (2005).

    CAS  Article  Google Scholar 

  80. 80.

    J.L. Parsons and M.E. Milberg: Vibrational spectra of vitreous B2O3·xH2O. J. Am. Ceram. Soc. 43, 326 (1960).

    CAS  Article  Google Scholar 

  81. 81.

    J. Romanos, M. Beckner, D. Stalla, A. Tekeei, G. Suppes, S. Jalisatgi, M. Lee, J.D. Robertson, L. Firlej, B. Kuchta, C. Wexler, P. Pfeifer, and P. Yu: Infrared study of boron–carbon chemical bonds in boron-doped activated carbon. Carbon 54, 208 (2013).

    CAS  Article  Google Scholar 

  82. 82.

    K.N. Kim and S-G. Kim: Nickel particles prepared from nickel nitrate with and without urea by spray pyrolysis. Powder Technol. 145, 155 (2004).

    CAS  Article  Google Scholar 

  83. 83.

    O. Milosevic, L. Mancic, M.E. Rabanal, L.S. Gomez, and K. Marinkovic: Aerosol route in processing of nanostructured functional materials. KONA Powder and Part J. 27, 84 (2009).

    CAS  Article  Google Scholar 

  84. 84.

    M. Chhowalla, Y. Yin, G.A.J. Amaratunga, D.R. McKenzie, and Th. Frauenheim: Boronated tetrahedral amorphous carbon (ta-C: B). Diam. Relat. Mater. 6, 207 (1997).

    CAS  Article  Google Scholar 

  85. 85.

    P.N. Vishwakarma, V. Prasad, S.V. Subramanyam, and V. Ganesan: Structural morphology of amorphous conducting carbon film. Bull. Mater. Sci. 28, 609 (2005).

    CAS  Article  Google Scholar 

  86. 86.

    C-H. Jung, M-J. Lee, and C-J. Kim: Preparation of carbon-free B4C powder from B2O3 oxide by carbothermal reduction process. Mater. Lett. 58, 609 (2004).

    CAS  Article  Google Scholar 

  87. 87.

    M. Takano, A. Itoh, M. Akabori, and T. Ogawa: Oxygen solubility in dysprosium mononitride prepared by carbothermic synthesis. J. Alloys Compd. 327, 235 (2001).

    CAS  Article  Google Scholar 

  88. 88.

    B.H. Yang, J. Wang, D.D. Joseph, H.H. Hu, T-W. Pan, and R. Glowinski: Migration of a sphere in tube flow. J. Fluid Mech. 540, 109 (2005).

    Article  Google Scholar 

  89. 89.

    S.H. Park, W.J. Kim, and S.S. Kim: Thermophoretic transport and deposition of particles in vertical tube flow with variable wall temperature and thermal radiation. KSME Int. J. 13, 253 (1999).

    Article  Google Scholar 

  90. 90.

    M.J. Moore and R.I. Crane: Chapter 4. Deposition and Corrosion in Gas Turbine, A.B. Hart and A.J.B. Cutler eds.; John Wiley & Sons: New York, 1973; p. 34.

    Google Scholar 

  91. 91.

    T.N. Nazarchuk and L.N. Mekhanoshina: The oxidation of boron carbide. Soviet Powder Metallurgy Metal Ceram. 3, 123 (1964).

    Article  Google Scholar 

  92. 92.

    G.V. Samsonov: Chemical Properties and Analysis of Refractory Compounds (Consultants Bureau, New York, 1972).

    Google Scholar 

  93. 93.

    T. Va. Kosolapova: Carbides Properties, Production, and Applications (Plenum Press, New York, 1971).

    Google Scholar 

  94. 94.

    J.A. Bigdeloo and A.M. Hadian: Synthesis of high purity micron size boron carbide powder from B2O3/C precursor. Int. J. Recent Trends in Eng. 1, 176 (2009).

    Google Scholar 

  95. 95.

    A. Najafi, F. Golestani-Fard, H.R. Rezaie, and N. Ehsani: A novel route to obtain B4C nano powder via sol–gel method. Ceram. Int. 38, 3583 (2012).

    CAS  Article  Google Scholar 

  96. 96.

    R.F. Speyer and H. Lee: Advances in pressureless densification of boron carbide. J. Mater. Sci. 39, 6017 (2004).

    CAS  Article  Google Scholar 

  97. 97.

    S.C. Tsai, Y.L. Song, C.S. Tsai, C.C. Yang, W.Y. Chiu, and H.M. Lin: Ultrasonic spray pyrolysis for nanoparticles synthesis. J. Mater. Sci. 39, 3647 (2004).

    CAS  Article  Google Scholar 

  98. 98.

    J.H. Kim, V.I. Babushok, T.A. Germer, G.W. Mulholland, and S.H. Ehrman: Co-solvent assisted spray pyrolysis for the generation of metal particles. J. Mater. Res. 18, 1614 (2003).

    CAS  Article  Google Scholar 

  99. 99.

    E.S. Reddy, J.G. Noudem, S. Hebert, and C. Goupil: Fabrication and properties of four-leg oxide thermoelectric modules. J. Phys. D: Appl. Phys. 38, 3751 (2005).

    CAS  Article  Google Scholar 

  100. 100.

    T. Mori, T. Nishimura, K. Yamaura, and E. Takayama-Muromachi: High temperature thermoelectric properties of a homologous series of n-type boron icosahedra compounds: A possible counterpart to p-type boron carbide. J. Appl. Phys. 101, 093714 (2007).

    Article  CAS  Google Scholar 

  101. 101.

    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J-K. Yu, W.A. Goddard, III, and J.R. Heath: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).

    CAS  Article  Google Scholar 

  102. 102.

    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).

    CAS  Article  Google Scholar 

  103. 103.

    S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J-P. Fleurial: Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19, 2445 (2009).

    CAS  Article  Google Scholar 

  104. 104.

    G.D. Mahan: In Solid State Physics: Advances in Research and Applications, H. Ehrenreich and F. Spaepen ed.; Academic Press: San Diego, CA, 1998; pp. 81–157.

    Google Scholar 

  105. 105.

    J.R. Szczech, J.M. Higgins, and S. Jin: Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21, 4037 (2011).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Beril Ozcelik or Celaletdin Ergun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ozcelik, B., Ergun, C. Synthesis of boron carbide nanoparticles via spray pyrolysis. Journal of Materials Research 31, 2789–2803 (2016). https://doi.org/10.1557/jmr.2016.264

Download citation