Ionic borohydride clusters for the next generation of boron thin-films: Nano-building blocks for electrochemical and refractory materials

Abstract

Boron cluster chemistry roared to life in the 20th century with seminal discoveries outlining the incredibly versatile chemistry of boron, producing a range of neutral and ionic boron compounds that paved the way for a robust suite of hybrid materials that incorporate these electronically delocalized inorganic clusters with the additional organic flexibility. Looking toward further materials research in the 21st century, these stable, inorganic polyhedral borane clusters discovered during previous century will provide a particularly fertile ground for exploration. These stable clusters have already seen significant exploration, but their utility has been obscured by classical synthetic routes using highly toxic neutral borane compounds. This incongruity is quite ironic given the current variety of medical explorations conducted with the essentially nontoxic dodecahedral borane dianion. This article will lay out some essential context and outline key synthetic studies that may dramatically simplify access to these unique compounds to a broader community of materials scientists and engineers.

This is a preview of subscription content, access via your institution.

FIG. 1
SCHEME 1
FIG. 2
FIG. 3
SCHEME 2
SCHEME 3
SCHEME 4
SCHEME 5

References

  1. 1.

    R.P. Feynman: There’s plenty of room at the bottom. J. Microelectromech. Syst. 1, 60 (1992).

    Article  Google Scholar 

  2. 2.

    M.F. Roll: Symmetric functionalization of polyhedral phenylsilsesquioxanes as a route to nano-building blocks. Ph.D. dissertation, University of Michigan, Ann Arbor, 2010.

  3. 3.

    M.F. Roll, J.W. Kampf, Y. Kim, E. Yi, and R.M. Laine: Nano building blocks via iodination of [PhSiO1.5]n, forming [p-I-C6H4SiO1.5]n (n = 8, 10, 12), and a new route to high-surface-area, thermally stable, microporous materials via thermal elimination of I2. J. Am. Chem. Soc. 132, 10171 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    M.F. Roll, M.Z. Asuncion, J. Kampf, and R.M. Laine: para-Octaiodophenylsilsesquioxane, [p-IC6H4SiO1.5]8, a nearly perfect nano-building block. ACS Nano 2, 320 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    M. Antonietti and G.A. Ozin: Promises and problems of mesoscale materials chemistry or why meso? Chem. — Eur. J. 10, 28 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    A. Neubrand and J. Rödel: Gradient materials: An overview of a novel concept. Z. Metallkd. 88, 358 (1997).

    CAS  Google Scholar 

  7. 7.

    W.Y. Lee, D.P. Stinton, C.C. Berndt, F. Erdogan, Y-D. Lee, and Z. Mutasim: Concept of functionally graded materials for advanced thermal barrier coating applications. J. Am. Ceram. Soc. 79, 3003 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    Encyclopedia of Inorganic and Bioinorganic Chemistry: ‘Plenty of room’ revisited. Nat. Nanotechnol. 4, 781 (2009).

    Article  CAS  Google Scholar 

  9. 9.

    D.M. Eigler and E.K. Schweizer: Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524 (1990).

    CAS  Article  Google Scholar 

  10. 10.

    W.N. Lipscomb, A.R. Pitochelli, and M.F. Hawthorne: Probable structure of the [B10H10]2− ion. J. Am. Chem. Soc. 81, 5833 (1959).

    CAS  Article  Google Scholar 

  11. 11.

    A. Kaczmarczyk, R.D. Dobrott, and W.N. Lipscomb: Reactions of [B10H10]2− ion. Proc. Natl. Acad. Sci. 48, 729 (1962).

    CAS  Article  Google Scholar 

  12. 12.

    W.N. Lipscomb: Framework rearrangement in boranes and carboranes. Science 153, 373 (1966).

    CAS  Article  Google Scholar 

  13. 13.

    Press Release: The 1976 Nobel Prize in Chemistry [Online]. Available: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1976/press.html (accessed May 19, 2016).

  14. 14.

    J. van der M. Reddy and W.N. Lipscomb: Molecular structure of B10H12(CH3CN)2]. J. Chem. Phys. 31, 610 (1959).

    Article  Google Scholar 

  15. 15.

    A.R. Pitochelli and F.M. Hawthorne: The isolation of the icosahedral [B12H12]2− Ion. J. Am. Chem. Soc. 82, 3228 (1960).

    CAS  Article  Google Scholar 

  16. 16.

    W. Preetz and G. Peters: The hexahydro-closo-hexaborate dianion [B6H6]2− and its derivatives. Eur. J. Inorg. Chem. 1999, 1831 (1999).

    Article  Google Scholar 

  17. 17.

    I.B. Sivaev, A.V. Prikaznov, and D. Naoufal: Fifty years of the closo-decaborate anion chemistry. Collect. Czech. Chem. Commun. 75, 1149 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    K.Y. Zhizhin, A.P. Zhdanov, and N.T. Kuznetsov: Derivatives of closo-decaborate anion [B10H10]2− with exo-polyhedral substituents. Russ. J. Inorg. Chem. 55, 2089 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    S. Körbe, P.J. Schreiber, and J. Michl: Chemistry of the carba-closo-dodecaborate(−) anion, CB11H12. Chem. Rev. 106, 5208 (2006).

    Article  CAS  Google Scholar 

  20. 20.

    V.I. Bregadze: Dicarba-closo-dodecaboranes C2B10H12 and their derivatives. Chem. Rev. 92, 209 (1992).

    CAS  Article  Google Scholar 

  21. 21.

    R.N. Grimes: Carboranes, 2nd ed. (Academic Press, Burlington, 2011).

    Google Scholar 

  22. 22.

    R.N. Grimes: Synthesis and serendipity in boron chemistry: A 50 year perspective. J. Organomet. Chem. 747, 4 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    R.N. Grimes: Carboranes in the chemist’s toolbox. Dalton Trans. 44, 5939 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    R.N. Grimes: Boron clusters come of age. J. Chem. Educ. 81, 657 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    R.N. Grimes: Thomas Jefferson, Alice in Wonderland, polyhedral boranes and the Lipscomb Legacy. In Structures and Mechanisms from Ashes to Enzymes (American Chemical Society, Washington, D.C., 2002); p. 20.

    Google Scholar 

  26. 26.

    N.S. Hosmane, J.A. Maguire, and A. Chakrabarti: Boron hydrides and nanostructured boron materials. In Encyclopedia of Inorganic and Bioinorganic Chemistry (John Wiley & Sons, Ltd., Hoboken, 2011).

    Google Scholar 

  27. 27.

    S.M. Gao and N.S. Hosmane: Dendrimer- and nanostructure-supported carboranes and metallocarboranes. Russ. Chem. Bull. 63, 788 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    N.S. Hosmane, ed.: Boron Science: New Technologies and Applications, 1st ed. (CRC Press, Boca Raton, 2011).

    Google Scholar 

  29. 29.

    N.S. Hosmane, J.A. Maguire, Y. Zhu, and M. Takagaki: Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment, 1st ed. (World Scientific Publishing Company, Singapore; Hackensack, 2012).

    Book  Google Scholar 

  30. 30.

    M.K. Kolel-Veetil and T.M. Keller: The state of the art in boron polymer chemistry. In Macromolecules Containing Metal and Metal-Like Elements, A.S. Abd-El-Aziz, C.E. Carraher, Jr., C.E. Pittman, Jr., and M. Zeldin, eds. (John Wiley & Sons, Inc., Hoboken, 2007); p. 1.

    Google Scholar 

  31. 31.

    Y. Nagata and Y. Chujo: Organoboron polymers. In Macromolecules Containing Metal and Metal-Like Elements, A.S. Abd-El-Aziz, C.E. Carraher, Jr., C.E. Pittman, Jr., and M. Zeldin, eds. (John Wiley & Sons, Inc., Hoboken, 2007); p. 121.

    Google Scholar 

  32. 32.

    N. Matsumi and Y. Chujo: π-Conjugated organoboron polymers via the vacant p-orbital of the boron atom. Polym. J. 40, 77 (2007).

    Article  CAS  Google Scholar 

  33. 33.

    N. Matsumi and Y. Chujo: A new class of π-conjugated organoboron polymers. In Contemporary Boron Chemistry, M.G. Davidson, K. Wade, T.B. Marder, and A.K. Hughes, eds. (Royal Society of Chemistry, Cambridge, 2007); p. 51.

    Google Scholar 

  34. 34.

    M. Patel and A.C. Swain: Polymers incorporating icosahedral closo-dicarbaborane units. In Macromolecules Containing Metal and Metal-Like Elements, A.S. Abd-El-Aziz, C.E. Carraher, Jr., C.E. Pittman, Jr., and M. Zeldin, eds. (John Wiley & Sons, Inc., Hoboken, 2007); p. 77.

    Google Scholar 

  35. 35.

    P. Kaszynski: Four decades of organic chemistry of closo-boranes: A synthetic toolbox for constructing liquid crystal materials. A review. Collect. Czech. Chem. Commun. 64, 895 (1999).

    CAS  Article  Google Scholar 

  36. 36.

    P. Kaszynski: closo-Boranes as structural elements for liquid crystals. In Boron Science: New Technologies and Applications, 1st ed., N.S. Hosmane, ed. (CRC Press: Boca Raton, 2011).

    Google Scholar 

  37. 37.

    B. Ringstrand: Boron clusters as the centerpiece of advanced liquid crystals: Fundamental chemistry and properties. Ph.D. dissertation, Vanderbilt University, Nashville, 2011.

  38. 38.

    P.A. Jelliss: Photoluminescence from boron-based polyhedral clusters. In Boron Science: New Technologies and Applications, 1st ed., N.S. Hosmane, ed. (CRC Press, Boca Raton, 2011).

    Google Scholar 

  39. 39.

    C.D. Entwistle and T.B. Marder: Boron chemistry lights the way: Optical properties of molecular and polymeric systems. Angew. Chem., Int. Ed. 41, 2927 (2002).

    CAS  Article  Google Scholar 

  40. 40.

    A. Pelter, R.T. Pardasani, and P. Pardasani: The photochemistry of boron compounds. Tetrahedron 56, 7339 (2000).

    CAS  Article  Google Scholar 

  41. 41.

    A. Vöge and D. Gabel: Boron derivatives for application in nonlinear opics. In Boron Science: New Technologies and Applications, 1st ed., N.S. Hosmane, ed. (CRC Press, Boca Raton, 2011).

    Google Scholar 

  42. 42.

    M. Lamrani, M. Mitsuishi, R. Hamasaki, and Y. Yamamoto: Engineered fullerenes-carborane conjugated rods: New hybrid materials for NLO devices. In Contemporary Boron Chemistry, M.G. Davidson, K. Wade, T.B. Marder, and A.K. Hughes, eds. (Royal Society of Chemistry, Cambridge, 2007); p. 77.

    Google Scholar 

  43. 43.

    N. Ma, L. Yan, W. Guan, Y. Qiu, and Z. Su: Theoretical investigation on electronic structure and second-order nonlinear optical properties of novel hexamolybdate-organoimido-(car)borane hybrid. Phys. Chem. Chem. Phys. 14, 5605 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    B.P. Dash, R. Satapathy, J.A. Maguire, and N.S. Hosmane: Polyhedral boron clusters in materials science. New J. Chem. 35, 1955 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    Z. Yinghuai, K.C. Yan, J.A. Maguire, and N.S. Hosmane: Boron-based hybrid nanostructures: Novel applications of modern materials. In Hybrid Nanomaterials, B.P.S. Chauhan, ed. (John Wiley & Sons, Inc., Hoboken, 2011); p. 181.

    Google Scholar 

  46. 46.

    M.G. Davidson, K. Wade, T.B. Marder, and A.K. Hughes, eds.: Contemporary Boron Chemistry (Royal Society of Chemistry, Cambridge, 2007).

    Google Scholar 

  47. 47.

    C. Sanchez, G.J.de A.A. Soler-Illia, F. Ribot, T. Lalot, C.R. Mayer, and V. Cabuil: Designed hybrid organic–inorganic nanocomposites from functional nanobuilding blocks. Chem. Mater. 13, 3061 (2001).

    CAS  Article  Google Scholar 

  48. 48.

    H.C. Miller, E.L. Muetterties, J.L. Boone, P. Garrett, and M.F. Hawthorne: Borane anions. In Inorganic Syntheses, Vol. 10, E.L. Muetterties, ed. (John Wiley & Sons, Inc., Hoboken, 1967); p. 81.

    Google Scholar 

  49. 49.

    R.L. Middaugh: Chapter 8-closo-Boron hydrides. In Boron Hydride Chemistry, E.L. Muetterties, ed. (Academic Press, New York, 1975); p. 273.

    Google Scholar 

  50. 50.

    C. Sanchez, P. Belleville, M. Popall, and L. Nicole: Applications of advanced hybrid organic–inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 40, 696 (2011).

    CAS  Article  Google Scholar 

  51. 51.

    R.E. Morris: Modular materials from zeolite-like building blocks. J. Mater. Chem. 15, 931 (2005).

    CAS  Article  Google Scholar 

  52. 52.

    J. Kim, B. Chen, T.M. Reineke, H. Li, M. Eddaoudi, D.B. Moler, M. O’Keeffe, and O.M. Yaghi: Assembly of metal–organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. J. Am. Chem. Soc. 123, 8239 (2001).

    CAS  Article  Google Scholar 

  53. 53.

    O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, and J. Kim: Reticular synthesis and the design of new materials. Nature 423, 705 (2003).

    CAS  Article  Google Scholar 

  54. 54.

    T. Peymann, C.B. Knobler, and M.F. Hawthorne: An icosahedral array of methyl groups supported by an aromatic borane scaffold: The [closo-B12(CH3)12]2− ion. J. Am. Chem. Soc. 121, 5601 (1999).

    CAS  Article  Google Scholar 

  55. 55.

    H. Matsumoto, K. Higuchi, S. Kyushin, and M. Goto: Octakis(1,1,2-trimethylpropyl)octasilacubane: Synthesis, molecular structure, and unusual properties. Angew. Chem., Int. Ed. Engl. 31, 1354 (1992).

    Article  Google Scholar 

  56. 56.

    M.A. Hossain, M.B. Hursthouse, and K.M.A. Malik: Octa(phenylsilasesquioxane) acetone solvate. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 35, 2258 (1979).

    Article  Google Scholar 

  57. 57.

    H.R. Allcock: Inorganic–organic polymers. Adv. Mater. 6, 106 (1994).

    CAS  Article  Google Scholar 

  58. 58.

    R. Richter, G. Roewer, U. Böhme, K. Busch, F. Babonneau, H.P. Martin, and E. Müller: Organosilicon polymers—Synthesis, architecture, reactivity and applications. Appl. Organomet. Chem. 11, 71 (1997).

    CAS  Article  Google Scholar 

  59. 59.

    W. Siebert and Y. Chujo, eds.: Organoboron mainchain polymers. In Advances in Boron Chemistry, 1st ed. (Royal Society of Chemistry, Cambridge, 1997); p. 518.

    Google Scholar 

  60. 60.

    R.N. Grimes: Carborane polymers and dendrimers. In Carboranes, 2nd ed. (Academic Press, Oxford, 2011); p. 1015.

    Google Scholar 

  61. 61.

    J. Green, N. Mayes, and M.S. Cohen: Carborane polymers. III. Vinyl carboranes. J. Polym. Sci., Part A: Gen. Pap. 3, 3275 (1965).

    CAS  Google Scholar 

  62. 62.

    R.E. Williams: Carborane polymers. Pure Appl. Chem. 29, 569–583 (1972).

    CAS  Article  Google Scholar 

  63. 63.

    D.A. Brown, H.M. Colquhoun, J.A. Daniels, J.A.H. MacBride, I.R. Stephenson, and K. Wade: Polymers and ceramics based on icosahedral carboranes. Model studies of the formation and hydrolytic stability of aryl ether, ketone, amide and borane linkages between carborane units. J. Mater. Chem. 2, 793 (1992).

    CAS  Article  Google Scholar 

  64. 64.

    S. Packirisamy: Decaborane(14)-based polymers. Prog. Polym. Sci. 21, 707 (1996).

    CAS  Article  Google Scholar 

  65. 65.

    L.G. Sneddon: Boron polymers and materials. In Advances in Boron Chemistry, 1st ed., W. Sieber, ed. (Royal Society of Chemistry, Cambridge, 1997); p. 491.

    Google Scholar 

  66. 66.

    L.G. Sneddon, M.G.L. Mirabelli, A.T. Lynch, P.J. Fazen, K. Su, and J.S. Beck: Polymeric precursors to boron based ceramics. Pure Appl. Chem. 63, 407 (2009).

    Article  Google Scholar 

  67. 67.

    T.B. Yisgedu, X. Chen, S. Schricker, J. Parquette, E.A. Meyers, and S.G. Shore: Synthesis and characterization of homopolymers and copolymers containing closo-[B12H12]2− boron cage derivatives. Chem. — Eur. J. 15, 2190 (2009).

    CAS  Article  Google Scholar 

  68. 68.

    B.P. Dash, R. Satapathy, J.A. Maguire, and N.S. Hosmane: Carborane clusters: Versatile synthetic building blocks for dendritic, nanostructured and polymeric materials. In Boron Science: New Technologies and Applications, 1st ed., N.S. Hosmane, ed. (CRC Press, Boca Raton, 2011).

    Google Scholar 

  69. 69.

    C. Viñas, R. Núñez, and F. Teixidor: Large molecules containing icosahedral boron clusters designed for potential applications. In Boron Science: New Technologies and Applications, 1st ed., N.S. Hosmane, ed. (CRC Press, Boca Raton, 2011).

    Google Scholar 

  70. 70.

    H.R. Allcock: Recent developments in polyphosphazene materials science. Curr. Opin. Solid State Mater. Sci. 10, 231 (2006).

    CAS  Article  Google Scholar 

  71. 71.

    F. Cheng and F. Jäkle: Boron-containing polymers as versatile building blocks for functional nanostructured materials. Polym. Chem. 2, 2122 (2011).

    CAS  Article  Google Scholar 

  72. 72.

    W. Niu, C. O’Sullivan, B.M. Rambo, M.D. Smith, and J.J. Lavigne: Self-repairing polymers: Poly(dioxaborolane)s containing trigonal planar boron. Chem. Commun. 34, 4342 (2005).

    Article  CAS  Google Scholar 

  73. 73.

    R.W. Tilford, W.R. Gemmill, H-C. zur Loye, and J.J. Lavigne: Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem. Mater. 18, 5296 (2006).

    CAS  Article  Google Scholar 

  74. 74.

    R.W. Tilford, S.J. Mugavero, P.J. Pellechia, and J.J. Lavigne: Tailoring microporosity in covalent organic frameworks. Adv. Mater. 20, 2741 (2008).

    CAS  Article  Google Scholar 

  75. 75.

    A.P. Cote: Porous, crystalline, covalent organic frameworks. Science 310, 1166 (2005).

    CAS  Article  Google Scholar 

  76. 76.

    H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortes, A.P. Cote, R.E. Taylor, M. O’Keeffe, and O.M. Yaghi: Designed synthesis of 3D covalent organic frameworks. Science 316, 268 (2007).

    CAS  Article  Google Scholar 

  77. 77.

    I.B. Sivaev, V.I. Bregadze, and N.T. Kuznetsov: Derivatives of the closo-dodecaborate anion and their application in medicine. Russ. Chem. Bull. 51, 1362 (2002).

    CAS  Article  Google Scholar 

  78. 78.

    R.M. Kabbani: High yield synthesis of [(C4H9)4N][Ni(η5-C5H5)B6H6]. Polyhedron 15, 1951 (1996).

    CAS  Article  Google Scholar 

  79. 79.

    J.M. Makhlouf, W.V. Hough, and G.T. Hefferan: Practical synthesis for decahydrodecaborates. Inorg. Chem. 6, 1196 (1967).

    CAS  Article  Google Scholar 

  80. 80.

    D.C. Sayles: Thermolysis of tetraalkylammonium borohydrides to bis(tetraalkylammonium) decahydrodecaboranes. U.S. Patent No. 4391993 A, July 5, 1983.

  81. 81.

    B. Spielvogel and K. Cook: Method of production of B10H102− ammonium salts and methods of production of B18H22. U.S. Patent No. 20050169828 A1, August 4, 2005.

  82. 82.

    H.C. Miller, N.E. Miller, and E.L. Muetterties: Chemistry of boranes. XX. Syntheses of polyhedral boranes. Inorg. Chem. 3, 1456 (1964).

    CAS  Article  Google Scholar 

  83. 83.

    G.B. Dunks and K.P. Ordonez: A one-step synthesis of tetradecahydroundecaborate (1−) ion from sodium tetrahydroborate. Inorg. Chem. 17, 1514 (1978).

    CAS  Article  Google Scholar 

  84. 84.

    G.B. Dunks, K. Barker, E. Hedaya, C. Hefner, K. Palmer-Ordonez, and P. Remec: Simplified synthesis of decaborane(14) from sodium tetrahydroborate via tetradecahydroundecaborate(1−) ion. Inorg. Chem. 20, 1692 (1981).

    CAS  Article  Google Scholar 

  85. 85.

    M. Komura, K. Aono, K. Nagasawa, and S. Sumimoto: A convenient preparation of 10B-enriched B12H11SH2−, an agent for neutron capture therapy. Chem. Express 2, 173 (1987).

    CAS  Google Scholar 

  86. 86.

    T. Peymann, C.B. Knobler, S.I. Khan, and M.F. Hawthorne: Dodecamethyl-closo-dodecaborate(2−). Inorg. Chem. 40, 1291 (2001).

    CAS  Article  Google Scholar 

  87. 87.

    T. Peymann, C. Knobler, and M.F. Hawthorne: An unpaired electron incarcerated within an icosahedral borane cage: Synthesis and crystal structure of the blue, air-stable {[closo-B12(CH3)12]-radical}. Chem. Commun. 2039 (1999).

  88. 88.

    T. Peymann, A. Herzog, C.B. Knobler, and M.F. Hawthorne: Aromatic polyhedral hydroxyborates: Bridging boron oxides and boron hydrides. Angew. Chem. Int. Ed. 38, 1061 (1999).

    CAS  Article  Google Scholar 

  89. 89.

    O.K. Farha, R.L. Julius, M.W. Lee, R.E. Huertas, C.B. Knobler, and M.F. Hawthorne: Synthesis of stable dodecaalkoxy derivatives of hypercloso-B12H12. J. Am. Chem. Soc. 127, 18243 (2005).

    CAS  Article  Google Scholar 

  90. 90.

    M.W. Lee, O.K. Farha, M.F. Hawthorne, and C.H. Hansch: Alkoxy derivatives of dodecaborate: Discrete nanomolecular ions with tunable pseudometallic properties. Angew. Chem. Int. Ed. 46, 3018 (2007).

    CAS  Article  Google Scholar 

  91. 91.

    S.S. Jalisatgi, V.S. Kulkarni, B. Tang, Z.H. Houston, M.W. Lee, and M.F. Hawthorne: A convenient route to diversely substituted icosahedral closomer nanoscaffolds. J. Am. Chem. Soc. 133, 12382 (2011).

    CAS  Article  Google Scholar 

  92. 92.

    I.B. Sivaev, V.I. Bregadze, and S. Sjöberg: Chemistry of closo-dodecaborate anion [B12H12]2−: A review. Collect. Czech. Chem. Commun. 67, 679 (2002).

    CAS  Article  Google Scholar 

  93. 93.

    N. Wiberg, C.M.M. Finger, and K. Polborn: Tetrakis(tri-tert-butylsilyl)-tetrahedro-tetrasilane (t-Bu3Si)4Si4: The first molecular silicon compound with a Si4 tetrahedron. Angew. Chem. Int. Ed. Engl. 32, 1054 (1993).

    Article  Google Scholar 

  94. 94.

    A. Sekiguchi, T. Yatabe, C. Kabuto, and H. Sakurai: Chemistry of organosilicon compounds. 303. The missing hexasilaprismane: Synthesis, x-ray analysis and photochemical reactions. J. Am. Chem. Soc. 115, 5853 (1993).

    CAS  Article  Google Scholar 

  95. 95.

    K. Furukawa, M. Fujino, and N. Matsumoto: Cubic silicon cluster. Appl. Phys. Lett. 60, 2744 (1992).

    CAS  Article  Google Scholar 

  96. 96.

    A. Sekiguchi, T. Yatabe, H. Kamatani, C. Kabuto, and H. Sakurai: Chemistry of organosilicon compounds. 293. Preparation, characterization, and crystal structures of octasilacubanes and octagermacubanes. J. Am. Chem. Soc. 114, 6260 (1992).

    CAS  Article  Google Scholar 

  97. 97.

    H. Matsumoto, K. Higuchi, Y. Hoshino, H. Koike, Y. Naoi, and Y. Nagai: The first octasilacubane system: Synthesis of octakis-(t-butyldimethylsilyl) pentacyclo [4.2.0.02,5.03,8.04,7] octasilane. J. Chem. Soc., Chem. Commun. 16, 1083 (1988).

    Article  Google Scholar 

  98. 98.

    M.G. Voronkov and V.I. Lavrent’yev: Polyhedral oligosilsesquioxanes and their homo derivatives. In Inorganic Ring Systems (Springer, Berlin, 1982); p. 199.

    Google Scholar 

  99. 99.

    R.H. Baney, M. Itoh, A. Sakakibara, and T. Suzuki: Silsesquioxanes. Chem. Rev. 95, 1409 (1995).

    CAS  Article  Google Scholar 

  100. 100.

    R.M. Laine: Nanobuilding blocks based on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanes. J. Mater. Chem. 15, 3725 (2005).

    CAS  Article  Google Scholar 

  101. 101.

    R.M. Laine and M.F. Roll: Polyhedral phenylsilsesquioxanes. Macromolecules 44, 1073 (2011).

    CAS  Article  Google Scholar 

  102. 102.

    W. Kaim, N.S. Hosmane, S. Záliš, J.A. Maguire, and W.N. Lipscomb: Boron atoms as spin carriers in two- and three-dimensional systems. Angew. Chem. Int. Ed. 48, 5082 (2009).

    CAS  Article  Google Scholar 

  103. 103.

    J. Poater, M. Solà, C. Viñas, and F. Teixidor: π aromaticity and three-dimensional aromaticity: Two sides of the same coin? Angew. Chem. Int. Ed. 53, 12191 (2014).

    CAS  Article  Google Scholar 

  104. 104.

    A.N. Alexandrova, A.I. Boldyrev, H-J. Zhai, and L-S. Wang: All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord. Chem. Rev. 250, 2811 (2006).

    CAS  Article  Google Scholar 

  105. 105.

    Z. Chen and R.B. King: Spherical aromaticity: Recent work on fullerenes, polyhedral boranes, and related structures. Chem. Rev. 105, 3613 (2005).

    CAS  Article  Google Scholar 

  106. 106.

    R.B. King: Three-dimensional aromaticity in polyhedral boranes and related molecules. Chem. Rev. 101, 1119 (2001).

    CAS  Article  Google Scholar 

  107. 107.

    P. von R. Schleyer, G. Subramanian, H. Jiao, K. Najafian, and M. Hofman: Are boron compounds aromatic? An analysis of their magnetic properties. In Advances in Boron Chemistry, 1st ed., W. Siebert, ed. (Royal Society of Chemistry, Cambridge, 1997).

    Google Scholar 

  108. 108.

    S.H. Strauss: The search for larger and more weakly coordinating anions. Chem. Rev. 93, 927 (1993).

    CAS  Article  Google Scholar 

  109. 109.

    N.S. Hosmane, A. Vöge, and D. Gabel eds.: Boron in weakly coordinating anions and ionic liquids. In Boron Science: New Technologies and Applications, 1st ed. (CRC Press, Boca Raton, 2011).

    Google Scholar 

  110. 110.

    T.A. Engesser, M.R. Lichtenthaler, M. Schleep, and I. Krossing: Reactive p-block cations stabilized by weakly coordinating anions. Chem. Soc. Rev. 45, 789 (2016).

    CAS  Article  Google Scholar 

  111. 111.

    L. Pospíšil, B.T. King, and J. Michl: Voltammetry in benzene using lithium dodecamethylcarba-closo-dodecaborate, LiCB11Me12, as a supporting electrolyte: Reduction of Ag+. Electrochim. Acta 44, 103 (1998).

    Article  Google Scholar 

  112. 112.

    A. Avelar, F.S. Tham, and C.A. Reed: Superacidity of boron acids H2(B12X12)(X = Cl, Br). Angew. Chem. 121, 3543 (2009).

    Article  Google Scholar 

  113. 113.

    V. Geis, K. Guttsche, C. Knapp, H. Scherer, and R. Uzun: Synthesis and characterization of synthetically useful salts of the weakly-coordinating dianion [B12Cl12]2−. Dalton Trans. 15, 2687 (2009).

    Article  CAS  Google Scholar 

  114. 114.

    M. Kessler, C. Knapp, V. Sagawe, H. Scherer, and R. Uzun: Synthesis, characterization, and crystal structures of silylium compounds of the weakly coordinating dianion [B12Cl12]2−. Inorg. Chem. 49, 5223 (2010).

    CAS  Article  Google Scholar 

  115. 115.

    S.H. Strauss: Highly fluorinated closo-borane and -carborane anions. In Contemporary Boron Chemistry, M.G. Davidson, K. Wade, T.B. Marder, and A.K. Hughes, eds. (Royal Society of Chemistry, Cambridge, 2007); p. 44.

    Google Scholar 

  116. 116.

    S.V. Ivanov, J.A. Davis, S.M. Miller, O.P. Anderson, and S.H. Strauss: Synthesis and characterization of ammonioundecafluoro-closo-dodecaborates(1−). New superweak anions. Inorg. Chem. 42, 4489 (2003).

    CAS  Article  Google Scholar 

  117. 117.

    D. Gabel, S. Mai, and O. Perleberg: The formation of boron–carbon bonds to closo-decaborate(2−) and closo-dodecaborate(2−). J. Organomet. Chem. 581, 45 (1999).

    CAS  Article  Google Scholar 

  118. 118.

    O. Bondarev and M.F. Hawthorne: Catalytic hydroxylation of [closo-B12H12]2−: Adaptation of the periana reaction to a polyhedral borane. Chem. Commun. 47, 6978 (2011).

    CAS  Article  Google Scholar 

  119. 119.

    T. Peymann, C.B. Knobler, S.I. Khan, and M.F. Hawthorne: Dodecahydroxy-closo-dodecaborate(2−). J. Am. Chem. Soc. 123, 2182 (2001).

    CAS  Article  Google Scholar 

  120. 120.

    T. Peymann, C.B. Knobler, and M.F. Hawthorne: A study of the sequential acid-catalyzed hydroxylation of dodecahydro-closo-dodecaborate(2−). Inorg. Chem. 39, 1163 (2000).

    CAS  Article  Google Scholar 

  121. 121.

    W.H. Knoth, H.C. Miller, J.C. Sauer, J.H. Balthis, Y.T. Chia, and E.L. Muetterties: Chemistry of boranes. IX. Halogenation of B10H102− and B12H122−. Inorg. Chem. 3, 159 (1964).

    CAS  Article  Google Scholar 

  122. 122.

    R.T. Boeré, J. Derendorf, C. Jenne, S. Kacprzak, M. Keßler, R. Riebau, S. Riedel, T.L. Roemmele, M. Rühle, H. Scherer, T. Vent-Schmidt, J. Warneke, and S. Weber: On the oxidation of the three-dimensional aromatics [B12X12]2− (X = F, Cl, Br, I). Chem. — Eur. J. 20, 4447 (2014).

    Article  CAS  Google Scholar 

  123. 123.

    W. Gu and O.V. Ozerov: Exhaustive chlorination of [B12H12]2− without chlorine gas and the use of [B12Cl12]2− as a supporting anion in catalytic hydrodefluorination of aliphatic C−F bonds. Inorg. Chem. 50, 2726 (2011).

    CAS  Article  Google Scholar 

  124. 124.

    Y. Zhang, J. Liu, and S. Duttwyler: Synthesis and structural characterization of ammonio/hydroxo undecachloro-closo-dodecaborates [B12Cl11NH3]/[B12Cl11OH]2 and their derivatives: Ammonio/hydroxo undecachloro-closo-dodecaborates. Eur. J. Inorg. Chem. 2015, 5158 (2015).

    CAS  Article  Google Scholar 

  125. 125.

    D.V. Peryshkov, A.A. Popov, and S.H. Strauss: Direct perfluorination of K2B12H12 in acetonitrile occurs at the gas bubble–solution interface and is inhibited by HF. Experimental and DFT study of inhibition by protic acids and soft, polarizable anions. J. Am. Chem. Soc. 131, 18393 (2009).

    CAS  Article  Google Scholar 

  126. 126.

    S.V. Ivanov, J.J. Rockwell, A.J. Lupinetti, K.A. Solntsev, and S.H. Strauss: Regioselective fluorination of CB11H12, CB9H10 and B10H102−. In Advances in boron chemistry, 1st ed., W. Siebert, ed. (Royal Society of Chemistry, Cambridge, 1997); p. 430.

    Google Scholar 

  127. 127.

    W.H. Knoth, H.C. Miller, D.C. England, G.W. Parshall, and E.L. Muetterties: Derivative chemistry of B10H102− and B12H122−. J. Am. Chem. Soc. 84, 1056 (1962).

    CAS  Article  Google Scholar 

  128. 128.

    W.H. Knoth, J.C. Sauer, D.C. England, W.R. Hertler, and E.L. Muetterties: Chemistry of boranes. XIX.1 derivative chemistry of B10H102− and B12H122−. J. Am. Chem. Soc. 86, 3973 (1964).

    CAS  Article  Google Scholar 

  129. 129.

    E.I. Tolpin, G.R. Wellum, and S.A. Berley: Synthesis and chemistry of mercaptoundecahydro-closo-dodecaborate(2−). Inorg. Chem. 17, 2867 (1978).

    CAS  Article  Google Scholar 

  130. 130.

    W.R. Hertler and M.S. Raasch: Chemistry of boranes. XIV. Amination of [B10H10]2− and [B12H12]2− with hydroxylamine-O-sulfonic acid. J. Am. Chem. Soc. 86, 3661 (1964).

    CAS  Article  Google Scholar 

  131. 131.

    S.G. Shore, E.J.M. Hamilton, R.G. Kultyshev, H.T. Leung, and T. Yisgedu: Syntheses and chemistry of bis- and tris-mercaptoborates. Pure Appl. Chem. 78, 1341–1347 (2006).

    CAS  Article  Google Scholar 

  132. 132.

    R.G. Kultyshev, J. Liu, E.A. Meyers, and S.G. Shore: Chemistry of inner sulfonium salts of dodecaborane. In Contemporary Boron Chemistry, M.G. Davidson, K. Wade, T.B. Marder, and A.K. Hughes, eds. (Royal Society of Chemistry, Cambridge, 2007); p. 167.

    Google Scholar 

  133. 133.

    E.J.M. Hamilton, H.T. Leung, R.G. Kultyshev, X. Chen, E.A. Meyers, and S.G. Shore: Unusual cationic tris(dimethylsulfide)-substituted closo-boranes: Preparation and characterization of [1,7,9-(Me2S)3-B12H9] BF4 and [1,2,10-(Me2S)3-B10H7] BF4. Inorg. Chem. 51, 2374 (2012).

    CAS  Article  Google Scholar 

  134. 134.

    W.H. Knoth, J.C. Sauer, H.C. Miller, and E.L. Muetterties: Diazonium and carbonyl derivatives of polyhedral boranes. J. Am. Chem. Soc. 86, 115 (1964).

    CAS  Article  Google Scholar 

  135. 135.

    W.H. Knoth, J.C. Sauer, J.H. Balthis, H.C. Miller, and E.L. Muetterties: Chemistry of boranes. XXX. Carbonyl derivatives of B10H102− and B12H122−. J. Am. Chem. Soc. 89, 4842 (1967).

    CAS  Article  Google Scholar 

  136. 136.

    W.H. Knoth: Chemistry of boranes. XXXI. 1,10-Bis(hydroxymethyl)octachlorodecaborate(2−). J. Am. Chem. Soc. 89, 4850 (1967).

    CAS  Article  Google Scholar 

  137. 137.

    K.M. Harmon, A.B. Harmon, and A.A. MacDonald: Cesium tropenylium nonahydrodecaborate. J. Am. Chem. Soc. 86, 5036 (1964).

    CAS  Article  Google Scholar 

  138. 138.

    A.B. Harmon and K.M. Harmon: Ionic organoboranes. II.1 cesium tropenylium undecahydroclovododecaborate. Cage–ring interactions in C7H6B10H9 and C7H6B12H11 ions. J. Am. Chem. Soc. 88, 4093 (1966).

    CAS  Article  Google Scholar 

  139. 139.

    K.M. Harmon, A.B. Harmon, and A.A. MacDonald: Ionic organoboranes. IV. Preparation and properties of the C7H6B10H9 and C7H6B12H11 hemiousenide ions. J. Am. Chem. Soc. 91, 323 (1969).

    CAS  Article  Google Scholar 

  140. 140.

    I.B. Sivaev, S. Sjöberg, V.I. Bregadze, and D. Gabel: Synthesis of alkoxy derivatives of dodecahydro-closo-dodecaborate anion [B12H12]2−. Tetrahedron Lett. 40, 3451 (1999).

    CAS  Article  Google Scholar 

  141. 141.

    T. Peymann, E. Lork, and D. Gabel: Hydroxoundecahydro-closo-dodecaborate(2−) as a nucleophile. Preparation and structural characterization of O-alkyl and O-acyl derivatives of hydroxoundecahydro-closo-dodecaborate(2−). Inorg. Chem. 35, 1355 (1996).

    CAS  Article  Google Scholar 

  142. 142.

    A.A. Semioshkin, I.B. Sivaev, and V.I. Bregadze: Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 8, 977 (2008).

    Article  CAS  Google Scholar 

  143. 143.

    J. Laskova, A. Kozlova, M. Białek-Pietras, M. Studzińska, E. Paradowska, V. Bregadze, Z.J. Leśnikowski, and A. Semioshkin: Reactions of closo-dodecaborate amines. Towards novel bis-(closo-dodecaborates) and closo-dodecaborate conjugates with lipids and non-natural nucleosides. J. Organomet. Chem. 807, 29 (2016).

    CAS  Article  Google Scholar 

  144. 144.

    A. Semioshkin, J. Laskova, O. Zhidkova, I. Godovikov, Z. Starikova, V. Bregadze, and D. Gabel: Synthesis and structure of novel closo-dodecaborate-based glycerols. J. Organomet. Chem. 695, 370 (2010).

    CAS  Article  Google Scholar 

  145. 145.

    I.B. Sivaev and V.I. Bregadze: Cyclic oxonoum derivatives as an efficient synthetic tool for the modification of polyhedral boron hydrides. In Boron Science: New Technologies and Applications, 1st ed., N.S. Hosmane, ed. (CRC Press, Boca Raton, 2011).

    Google Scholar 

  146. 146.

    I.B. Sivaev, S. Sjöberg, and V.I. Bregadze: [C2B10]-[B12] double cage boron compounds—A new approach to the synthesis of water-soluble boron-rich compounds for BNCT. J. Organomet. Chem. 680, 106 (2003).

    CAS  Article  Google Scholar 

  147. 147.

    I.B. Sivaev, V.I. Bregadze, and S. Sjöberg: Synthesis of O-bonded derivatives of closo-dodecaborate anion. [B12]-[C2B10] double cage boron compounds—A new approach to synthesis of BNCT agents. In Contemporary Boron Chemistry, M.G. Davidson, K. Wade, T.B. Marder, and A.K. Hughes, eds. (Royal Society of Chemistry, Cambridge, 2007); p. 135.

    Google Scholar 

  148. 148.

    A. Pushechnikov, S.S. Jalisatgi, and M.F. Hawthorne: Dendritic closomers: Novel spherical hybrid dendrimers. Chem. Commun. 49, 3579 (2013).

    CAS  Article  Google Scholar 

  149. 149.

    P.J. Kueffer, C.A. Maitz, A.A. Khan, S.A. Schuster, N.I. Shlyakhtina, S.S. Jalisatgi, J.D. Brockman, D.W. Nigg, and M.F. Hawthorne: Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes. Proc. Natl. Acad. Sci. 110, 6512 (2013).

    CAS  Article  Google Scholar 

  150. 150.

    M.F. Hawthorne and A. Pushechnikov: Polyhedral borane derivatives: Unique and versatile structural motifs. Pure Appl. Chem. 84, 2279–2288 (2012).

    CAS  Article  Google Scholar 

  151. 151.

    L. Ma, J. Hamdi, F. Wong, and M.F. Hawthorne: Closomers of high boron content: Synthesis, characterization, and potential application as unimolecular nanoparticle delivery vehicles for boron neutron capture therapy. Inorg. Chem. 45, 278 (2006).

    CAS  Article  Google Scholar 

  152. 152.

    T. Li, S.S. Jalisatgi, M.J. Bayer, A. Maderna, S.I. Khan, and M.F. Hawthorne: Organic syntheses on an icosahedral borane surface: Closomer structures with twelvefold functionality. J. Am. Chem. Soc. 127, 17832 (2005).

    CAS  Article  Google Scholar 

  153. 153.

    M.J. Bayer and M.F. Hawthorne: An improved method for the synthesis of [closo-B12(OH)12]2−. Inorg. Chem. 43, 2018 (2004).

    CAS  Article  Google Scholar 

  154. 154.

    J.H. Morris, H.J. Gysling, and D. Reed: Electrochemistry of boron compounds. Chem. Rev. 85, 51 (1985).

    CAS  Article  Google Scholar 

  155. 155.

    R. Littger, J. Taylor, G. Rudd, A. Newlon, D. Allis, S. Kotiah, and J.T. Spencer: Thermal, photochemical, and redox reactions of borane and metallaborane clusters with applications to molecular electronics. In Contemporary Boron Chemistry, M.G. Davidson, K. Wade, T.B. Marder, and A.K. Hughes, eds. (Royal Society of Chemistry, Cambridge, 2007); p. 67.

    Google Scholar 

  156. 156.

    T.B. Lee and M.L. McKee: Redox energetics of hypercloso boron hydrides BnHn (n = 6–13) and B12X12 (X = F, Cl, OH, and CH3). Inorg. Chem. 51, 4205 (2012).

    CAS  Article  Google Scholar 

  157. 157.

    R. Vespalec: Novel analytical subject matter: Cluster compounds of boron. In Xxxiii Mod. Elektrochem. Metody, Navrátil Tomáš, Fojta Miroslav, and Karolina Pecková, eds. (Lenka Srsenová, Ústí nad Labem, 2013); p. 234.

    Google Scholar 

  158. 158.

    A.I. Wixtrom, Y. Shao, D. Jung, C.W. Machan, S.N. Kevork, E.A. Qian, J.C. Axtell, S.I. Khan, C.P. Kubiak, and A.M. Spokoyny: Rapid synthesis of redox-active dodecaborane B12(OR)12 clusters under ambient conditions. Inorg. Chem. 3, 711 (2016).

    CAS  Google Scholar 

  159. 159.

    B.T. King, I. Zharov, and J. Michl: Alkylated carborane anions and radicals. Chem. Innov. 31, 23–31 (2001).

    CAS  Google Scholar 

  160. 160.

    M. Valášek, J. Štursa, R. Pohl, and J. Michl: Microwave-assisted alkylation of [CB11H12] and related anions. Inorg. Chem. 49, 10247 (2010).

    Article  CAS  Google Scholar 

  161. 161.

    R.T. Boeré, S. Kacprzak, M. Keßler, C. Knapp, R. Riebau, S. Riedel, T.L. Roemmele, M. Rühle, H. Scherer, and S. Weber: Oxidation of closo-[B12Cl12]2− to the radical anion [B12Cl12] and to neutral B12Cl12. Angew. Chem. Int. Ed. 50, 549 (2011).

    Article  CAS  Google Scholar 

  162. 162.

    A.N. Dey and J. Miller: Primary Li/SOCl2 cells VII. Effect of Li2B10Cl10 and Li2B12Cl12 electrolyte salts on the performance. J. Electrochem. Soc. 126, 1445 (1979).

    CAS  Article  Google Scholar 

  163. 163.

    J.W. Johnson and M.S. Whittingham: Lithium closoboranes as electrolytes in solid cathode lithium cells. J. Electrochem. Soc. 127, 1653 (1980).

    CAS  Article  Google Scholar 

  164. 164.

    J.W. Johnson and A.H. Thompson: Lithium closoboranes II. Stable nonaqueous electrolytes for elevated temperature lithium cells. J. Electrochem. Soc. 128, 932 (1981).

    CAS  Article  Google Scholar 

  165. 165.

    J.W. Johnson and J.F. Brody: Lithium closoborane electrolytes III. Preparation and characterization. J. Electrochem. Soc. 129, 2213 (1982).

    CAS  Article  Google Scholar 

  166. 166.

    C.M. Ionica-Bousquet, D. Muñoz-Rojas, W.J. Casteel, R.M. Pearlstein, G.G. Kumar, G.P. Pez, and M.R. Palacín: Polyfluorinated boron cluster based salts: A new electrolyte for application in nonaqueous asymmetric AC/Li4Ti5O12 supercapacitors. J. Power Sources 196, 1626 (2011).

    CAS  Article  Google Scholar 

  167. 167.

    S.V. Ivanov, W.J. Casteel, Jr., G.P. Pez, and M. Ulman: Polyfluorinated boron cluster anions for lithium electrolytes. U.S. Patent No. 7311993 B2, December 25, 2007.

  168. 168.

    C. Vogel and J. Meier-Haack: Preparation of ion-exchange materials and membranes. Desalination 342, 156 (2014).

    CAS  Article  Google Scholar 

  169. 169.

    M. Winter and R.J. Brodd: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245 (2004).

    CAS  Article  Google Scholar 

  170. 170.

    E. Quartarone and P. Mustarelli: Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 40, 2525 (2011).

    CAS  Article  Google Scholar 

  171. 171.

    M.L. Perry and A.Z. Weber: Advanced redox-flow batteries: A perspective. J. Electrochem. Soc. 163, A5064 (2016).

    CAS  Article  Google Scholar 

  172. 172.

    G.L. Soloveichik: Flow Batteries: Current status and trends. Chem. Rev. 115, 11533 (2015).

    CAS  Article  Google Scholar 

  173. 173.

    R.J.P. Corriu: Ceramics and nanostructures from molecular precursors. Angew. Chem. Int. Ed. 39, 1376 (2000).

    CAS  Article  Google Scholar 

  174. 174.

    P. Colombo, G. Mera, R. Riedel, and G.D. Sorarù: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics: Polymer-derived ceramics. J. Am. Ceram. Soc. 93, 1805 (2010).

    CAS  Google Scholar 

  175. 175.

    D. Li, J.T. McCann, Y. Xia, and M. Marquez: Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes. J. Am. Ceram. Soc. 89, 1861 (2006).

    CAS  Article  Google Scholar 

  176. 176.

    E. Bakker: Electrochemical sensors. Anal. Chem. 76, 3285 (2004).

    CAS  Article  Google Scholar 

  177. 177.

    J. Bobacka: Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis 18, 7 (2006).

    CAS  Article  Google Scholar 

  178. 178.

    T.J. Udovic, M. Matsuo, A. Unemoto, N. Verdal, V. Stavila, A.V. Skripov, J.J. Rush, H. Takamura, and S. Orimo: Sodium superionic conduction in Na2B12H12. Chem. Commun. 50, 3750 (2014).

    CAS  Article  Google Scholar 

  179. 179.

    W.S. Tang, T.J. Udovic, and V. Stavila: Altering the structural properties of A2B12H12 compounds via cation and anion modifications. J. Alloys Compd. 645 (S1), S200 (2015).

    CAS  Article  Google Scholar 

  180. 180.

    D.V. Peryshkov, A.A. Popov, and S.H. Strauss: Latent porosity in potassium dodecafluoro-closo-dodecaborate(2−). Structures and rapid room temperature interconversions of crystalline K2B12F12, K2(H2O)2B12F12, and K2(H2O)4B12F12 in the presence of water vapor. J. Am. Chem. Soc. 132, 13902 (2010).

    CAS  Article  Google Scholar 

  181. 181.

    K. Schmidt-Rohr and Q. Chen: Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 7, 75 (2008).

    CAS  Article  Google Scholar 

  182. 182.

    F. Jelen, A.B. Olejniczak, A. Kourilova, Z.J. Lesnikowski, and E. Palecek: Electrochemical DNA detection based on the polyhedral boron cluster label. Anal. Chem. 81, 840 (2009).

    CAS  Article  Google Scholar 

  183. 183.

    E.G. Hvastkovs and D.A. Buttry: Recent advances in electrochemical DNA hybridization sensors. Analyst 135, 1817 (2010).

    CAS  Article  Google Scholar 

  184. 184.

    E.L. Muetterties, J.H. Balthis, Y.T. Chia, W.H. Knoth, and H.C. Miller: Chemistry of boranes. VIII. Salts and acids of B10H102− and B12H122−. Inorg. Chem. 3, 444 (1964).

    CAS  Article  Google Scholar 

  185. 185.

    M.F. Hawthorne: New horizons for therapy based on the boron neutron capture reaction. Mol. Med. Today 4, 174 (1998).

    CAS  Article  Google Scholar 

  186. 186.

    N.S. Hosmane, Z. Yinghuai, J.A. Maguire, S.N. Hosmane, and A. Chakrabarti: Boron nanostructures—From materials to cancer therapy: An account. Main Group Chem. 9, 153 (2010).

    CAS  Article  Google Scholar 

  187. 187.

    R. Satapathy, B.P. Dash, C.S. Mahanta, B.R. Swain, B.B. Jena, and N.S. Hosmane: Glycoconjugates of polyhedral boron clusters. J. Organomet. Chem. 798, 13 (2015).

    CAS  Article  Google Scholar 

  188. 188.

    M.F. Hawthorne: Carborane chemistry at work and play. In Advances in Boron Chemistry, 1st ed., W. Siebert, ed. (Royal Society of Chemistry, Cambridge, 1997); p. 261.

    Google Scholar 

  189. 189.

    D.A. Feakes, K. Shelly, C.B. Knobler, and M.F. Hawthorne: Na3[B20H17NH3]: Synthesis and liposomal delivery to murine tumors. Proc. Natl. Acad. Sci. 91, 3029 (1994).

    CAS  Article  Google Scholar 

  190. 190.

    Y. Qin and E. Bakker: A copolymerized dodecacarborane anion as covalently attached cation exchanger in ion-selective sensors. Anal. Chem. 75, 6002 (2003).

    CAS  Article  Google Scholar 

  191. 191.

    L. Fojt, M. Fojta, B. Grüner, and R. Vespalec: Electrochemistry of closo-dodecaborate dianion and its simple exo-skeletal derivatives at carbon electrodes in aqueous phosphate buffers. J. Electroanal. Chem. 707, 38 (2013).

    CAS  Article  Google Scholar 

  192. 192.

    W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, and Y. Zhou, eds.: Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, 1st ed. (Wiley-American Ceramic Society, Hoboken, 2014).

    Google Scholar 

  193. 193.

    E.J. Wuchina, E. Opila, M. Opeka, W.G. Fahrenholtz, and I.G. Talmy: UHTCs: Ultra-high temperature ceramic materials for extreme environment applications. Interface 2007, 30 (2007).

    Google Scholar 

  194. 194.

    W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski: Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 90, 1347 (2007).

    CAS  Article  Google Scholar 

  195. 195.

    M.L. Hill: Materials for small radius leading edges for hypersonic vehicles. J. Spacecr. Rockets 5, 55 (1968).

    Article  Google Scholar 

  196. 196.

    M.M. Balakrishnarajan, P.D. Pancharatna, and R. Hoffmann: Structure and bonding in boron carbide: The invincibility of imperfections. New J. Chem. 31, 473 (2007).

    CAS  Article  Google Scholar 

  197. 197.

    L. Schmirgeld, L. Zuppiroli, M. Brunel, J. Delafon, and C. Templier: Ion implantations in boron: Remarkable stability of covalent structures based on icosahedra. In Boron Rich Solids, Vol. 231, D. Emin, T. Aselage, C.L. Beckel, I.A. Howard, and C. Wood, eds. (American Institute of Physics, New York, 1990); p. 630.

    Google Scholar 

  198. 198.

    S.T. Schwab, C.A. Stewart, K.W. Dudeck, S.M. Kozmina, J.D. Katz, B. Bartram, E.J. Wuchina, W.J. Kroenke, and G. Courtin: Polymeric precursors to refractory metal borides. J. Mater. Sci. 39, 6051 (2004).

    CAS  Article  Google Scholar 

  199. 199.

    K. Kokado and Y. Chujo: Polymer reaction of poly(p-phenylene-ethynylene) by addition of decaborane: Modulation of luminescence and heat resistance. Polym. J. 42, 363 (2010).

    CAS  Article  Google Scholar 

  200. 200.

    K. Su and L.G. Sneddon: Polymer-precursor routes to metal borides: Synthesis of titanium boride (TiB2) and zirconium boride (ZrB2). Chem. Mater. 3, 10 (1991).

    CAS  Article  Google Scholar 

  201. 201.

    K. Su and L.G. Sneddon: A polymer precursor route to metal borides. Chem. Mater. 5, 1659 (1993).

    CAS  Article  Google Scholar 

  202. 202.

    M.J. Pender, P.J. Carroll, and L.G. Sneddon: Transition-metal-promoted reactions of boron hydrides. 17. Titanium-catalyzed decaborane-olefin hydroborations. J. Am. Chem. Soc. 123, 12222 (2001).

    CAS  Article  Google Scholar 

  203. 203.

    X. Wei, P.J. Carroll, and L.G. Sneddon: New routes to organodecaborane polymers via ruthenium-catalyzed ring-opening metathesis polymerization. Organometallics 23, 163 (2004).

    CAS  Article  Google Scholar 

  204. 204.

    D.T. Welna, J.D. Bender, X. Wei, L.G. Sneddon, and H.R. Allcock: Preparation of boron-carbide/carbon nanofibers from a poly(norbornenyldecaborane) single-source precursor via electrostatic spinning. Adv. Mater. 17, 859 (2005).

    CAS  Article  Google Scholar 

  205. 205.

    L.G. Sneddon, M.J. Pender, K.M. Forsthoefel, U. Kusari, and X. Wei: Design, syntheses and applications of chemical precursors to advanced ceramic materials in nanostructured forms. J. Eur. Ceram. Soc. 25, 91 (2005).

    CAS  Article  Google Scholar 

  206. 206.

    M.M. Guron, M.J. Kim, and L.G. Sneddon: A simple polymeric precursor strategy for the syntheses of complex zirconium and hafnium-based ultra high-temperature silicon–carbide composite ceramics. J. Am. Ceram. Soc. 91, 1412 (2008).

    CAS  Article  Google Scholar 

  207. 207.

    S.S. Kher, Y. Tan, and J.T. Spencer: Chemical vapor deposition of metal borides, 4: The application of polyhedral boron clusters to the chemical vapor deposition formation of gadolinium boride hin-film materials. Appl. Organomet. Chem. 10, 297 (1996).

    CAS  Article  Google Scholar 

  208. 208.

    J.A. Glass, S.S. Kher, Y. Tan, and J.T. Spencer: The chemical vapor deposition of metal boride thin films from polyhedral cluster species. In Inorganic Materials Synthesis, Vol. 727, American Chemical Society, 1999; p. 130.

  209. 209.

    J.V. Romero: A study on the formation of solid state nanoscale materials using polyhedral borane compounds. Ph.D., Syracuse University, United States, New York, 2008.

  210. 210.

    H. Itoh, Y. Tsuzuki, T. Yogo, and S. Naka: Synthesis of cerium and gadolinium borides using boron cage compounds as a boron source. Mater. Res. Bull. 22, 1259 (1987).

    CAS  Article  Google Scholar 

  211. 211.

    M. Panda: Synthesis and Characterization of Alkali Metal Borides and closo-Hydroborates. Ph.D dissertation, University of Hamburg, Hamburg, 2006.

  212. 212.

    H.R. Hoekstra and J.J. Katz: The preparation and properties of the group IV-B metal borohydrides. J. Am. Chem. Soc. 71, 2488 (1949).

    CAS  Article  Google Scholar 

  213. 213.

    J.A. Jensen, J.E. Gozum, D.M. Pollina, and G.S. Girolami: Titanium, zirconium, and hafnium tetrahydroborates as “tailored” CVD precursors for metal diboride thin films. J. Am. Chem. Soc. 110, 1643 (1988).

    CAS  Article  Google Scholar 

  214. 214.

    A.L. Wayda, L.F. Schneemeyer, and R.L. Opila: Low-temperature deposition of zirconium and hafnium boride films by thermal decomposition of the metal borohydrides (M[BH4]4). Appl. Phys. Lett. 53, 361 (1988).

    CAS  Article  Google Scholar 

  215. 215.

    G.W. Rice and R.L. Woodin: Zirconium borohydride as a zirconium boride precursor. J. Am. Ceram. Soc. 71, C–181–C–183 (1988).

    Article  Google Scholar 

  216. 216.

    J. Sung, D.M. Goedde, G.S. Girolami, and J.R. Abelson: Remote-plasma chemical vapor deposition of conformal ZrB2 films at low temperature: A promising diffusion barrier for ultralarge scale integrated electronics. J. Appl. Phys. 91, 3904 (2002).

    CAS  Article  Google Scholar 

  217. 217.

    S. Jayaraman, Y. Yang, D.Y. Kim, G.S. Girolami, and J.R. Abelson: Hafnium diboride thin films by chemical vapor deposition from a single source precursor. J. Vac. Sci. Technol., A 23, 1619 (2005).

    CAS  Article  Google Scholar 

  218. 218.

    S. Jayaraman, E.J. Klein, Y. Yang, D.Y. Kim, G.S. Girolami, and J.R. Abelson: Chromium diboride thin films by low temperature chemical vapor deposition. J. Vac. Sci. Technol., A 23, 631 (2005).

    CAS  Article  Google Scholar 

  219. 219.

    H. Fujii and K. Ozawa: Critical temperature and carbon substitution in MgB2 preparted through the decomposition of Mg(BH4)2. Supercond. Sci. Technol. 23, 125012 (2010).

    Article  CAS  Google Scholar 

  220. 220.

    H. Fujii and K. Ozawa: Superconducting properties of PIT-processed MgB2 tapes using Mg(BH4)2 precursor. Supercond. Sci. Technol. 24, 095009 (2011).

    Article  CAS  Google Scholar 

  221. 221.

    M.K. Gallagher, W.E. Rhine, and H.K. Bowen: Low-temperature route to high-purity titanium, zirconium and hafnium diboride powders and films. In Ultrastructure processing of advanced ceramics (John Wiley & Sons, Inc., New York, 1988); p. 901.

    Google Scholar 

  222. 222.

    F.N. Tebbe and R.T. Baker: Borides and boride precursors deposited from solution, U.S. Patent No. 5364607 A, November 15, 1994.

  223. 223.

    A.Y. Bykov, K.Y. Zhizhin, and N.T. Kuznetsov: The chemistry of the octahydrotriborate anion [B3H8]. Russ. J. Inorg. Chem. 59, 1539 (2014).

    CAS  Article  Google Scholar 

  224. 224.

    G.E. Ryschlewitsch, K.C. Nainan, S.R. Miller, L.J. Todd, W.J. Dewkett, M. Grace, H. Beall, M.F. Hawthorne, and R. Leyden: Octahydrotriborate (1−) ([B3H8]) salts. In Inorganic Syntheses, Vol. 15, G.W. Parshall, ed. (John Wiley & Sons, Inc., New York, 1974); p. 111.

    Google Scholar 

  225. 225.

    D.M. Goedde and G.S. Girolami: A new class of CVD precursors to metal borides: Cr(B3H8)2 and related octahydrotriborate complexes. J. Am. Chem. Soc. 126, 12230 (2004).

    CAS  Article  Google Scholar 

  226. 226.

    D.M. Goedde, G.K. Windler, and G.S. Girolami: Synthesis and characterization of the homoleptic octahydrotriborate complex Cr(B3H8)2 and its Lewis base adducts. Inorg. Chem. 46, 2814 (2007).

    CAS  Article  Google Scholar 

  227. 227.

    D.Y. Kim, Y. Yang, J.R. Abelson, and G.S. Girolami: Volatile magnesium octahydrotriborate complexes as potential CVD precursors to MgB2. Synthesis and characterization of Mg(B3H8)2 and its etherates. Inorg. Chem. 46, 9060 (2007).

    CAS  Article  Google Scholar 

  228. 228.

    D.Y. Kim, Y. You, and G.S. Girolami: Synthesis and crystal structures of two (cyclopentadienyl)titanium(III) hydroborate complexes, [Cp∗TiCl(BH4)]2 and Cp2Ti(B3H8). J. Organomet. Chem. 693, 981 (2008).

    CAS  Article  Google Scholar 

  229. 229.

    Z. Huang, X. Chen, T. Yisgedu, E.A. Meyers, S.G. Shore, and J-C. Zhao: Ammonium octahydrotriborate (NH4B3H8): New synthesis, structure, and hydrolytic hydrogen release. Inorg. Chem. 50, 3738 (2011).

    CAS  Article  Google Scholar 

  230. 230.

    N-D. Van, F.M. Kleeberg, and T. Schleid: Syntheses, crystal structures, and properties of the isotypic pair [Cr(H2O)6]2[B12H12]3·15H2O and [In(H2O)6]2[B12H12]3·15H2O. Z. Anorg. Allg. Chem. 641, 2484 (2015).

    Article  CAS  Google Scholar 

  231. 231.

    X. Chen, H.K. Lingam, Z. Huang, T. Yisgedu, J-C. Zhao, and S.G. Shore: Thermal decomposition behavior of hydrated magnesium dodecahydrododecaborates. J. Phys. Chem. Lett. 1, 201 (2010).

    CAS  Article  Google Scholar 

  232. 232.

    Z. Huang, G. King, X. Chen, J. Hoy, T. Yisgedu, H.K. Lingam, S.G. Shore, P.M. Woodward, and J-C. Zhao: A simple and efficient way to synthesize unsolvated sodium octahydrotriborate. Inorg. Chem. 49, 8185 (2010).

    CAS  Article  Google Scholar 

  233. 233.

    A.C. Dunbar, J.A. Macor, and G.S. Girolami: Synthesis and single crystal structure of sodium octahydrotriborate, NaB3H8. Inorg. Chem. 53, 822 (2014).

    CAS  Article  Google Scholar 

  234. 234.

    Cesium (CAS Number 12008-75-2): Strem Product Catalog [Online]. Available at: http://www.strem.com/catalog/v/55-1800/14/cesium_12008-75-2 (accessed May 24, 2016).

  235. 235.

    B.R.S. Hansen, M. Paskevicius, H-W. Li, E. Akiba, and T.R. Jensen: Metal boranes: Progress and applications. Coord. Chem. Rev., doi:https://doi.org/10.1016/j.ccr.2015.12.003 (2016).

  236. 236.

    A.Y. Bykov, N.N. Mal’tseva, N.B. Generalova, K.Y. Zhizhin, and N.T. Kuznetsov: Reactions of sodium tetrahydroborate with alkyl and aryl halides: A new approach to the synthesis of B3H8 and B12H122− anions. Russ. J. Inorg. Chem. 58, 1321 (2013).

    CAS  Article  Google Scholar 

  237. 237.

    I.A. Ellis, D.F. Gaines, and R. Schaeffer: A convenient preparation of B12H122− salts. J. Am. Chem. Soc. 85, 3885 (1963).

    CAS  Article  Google Scholar 

  238. 238.

    F. Klanberg and E.L. Muetterties: Chemistry of boranes. XXVII. New polyhedral borane anions, B9H92− and B11H112−. Inorg. Chem. 5, 1955 (1966).

    CAS  Article  Google Scholar 

  239. 239.

    A.V. Agafonov, K.A. Solntsev, D.M. Vinitskii, and N.T. Kuznetsov: The synthesis of lower polyhedral hydroborate anions. Russ. J. Inorg. Chem. 27, 1697 (1982).

    Google Scholar 

  240. 240.

    H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H.R. Hoekstra, and E.K. Hyde: Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1. J. Am. Chem. Soc. 75, 215 (1953).

    CAS  Article  Google Scholar 

  241. 241.

    V.I. Mikheeva and V.B. Breitsis: The 0° solubility isotherm for sodium borohydride and sodium hydroxide in water. Dokl. Akad. Nauk SSSR 131, 1349 (1960).

    CAS  Google Scholar 

  242. 242.

    S. Pylypko, A. Zadick, M. Chatenet, P. Miele, M. Cretin, and U.B. Demirci: A preliminary study of sodium octahydrotriborate NaB3H8 as potential anodic fuel of direct liquid fuel cell. J. Power Sources 286, 10 (2015).

    CAS  Article  Google Scholar 

  243. 243.

    L.V. Titov and P.V. Petrovskii: Synthesis and some properties of calcium tetradecahydroundecaborate Ca(B11H14)2⋯4Dg (Dg = diglyme). Russ. J. Inorg. Chem. 56, 1032 (2011).

    CAS  Article  Google Scholar 

  244. 244.

    S. Garroni, C. Milanese, D. Pottmaier, G. Mulas, P. Nolis, A. Girella, R. Caputo, D. Olid, F. Teixidor, M. Baricco, A. Marini, S. Suriñach, and M.D. Baró: Experimental evidence of Na2[B12H12] and Na formation in the desorption pathway of the 2NaBH4 + MgH2 system. J. Phys. Chem. C 115, 16664 (2011).

    CAS  Article  Google Scholar 

  245. 245.

    M.P. Pitt, M. Paskevicius, D.H. Brown, D.A. Sheppard, and C.E. Buckley: Thermal stability of Li2B12H12 and its role in the decomposition of LiBH4. J. Am. Chem. Soc. 135, 6930 (2013).

    CAS  Article  Google Scholar 

  246. 246.

    J.A. Teprovich, H. Colón-Mercado, A.L.W. Ii, P.A. Ward, S. Greenway, D.M. Missimer, H. Hartman, J. Velten, J.H. Christian, and R. Zidan: Bi-functional Li2B12H12 for energy storage and conversion applications: Solid-state electrolyte and luminescent down-conversion dye. J. Mater. Chem. A 3, 22853 (2015).

    CAS  Article  Google Scholar 

  247. 247.

    A. Franken, B.T. King, J. Rudolph, P. Rao, B.C. Noll, and J. Michl: Preparation of [closo-CB11H12] by dichlorocarbene insertion into [nido-B11H14]. Collect. Czech. Chem. Commun. 66, 1238 (2001).

    CAS  Article  Google Scholar 

  248. 248.

    S. Körbe, D.B. Sowers, A. Franken, and J. Michl: Preparation of 1-p-halophenyl and 1-p-biphenylyl substituted monocarbadodecaborate anions [closo-1-Ar-CB11H11] by insertion of arylhalocarbenes into [nido-B11H14]. Inorg. Chem. 43, 8158 (2004).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author gratefully acknowledges support from Dr. Eric Wuchina and ONR Grant N000141310371. As well, the author also gratefully acknowledges Professor Richard M. Laine for his introduction to Hybrid Materials and Nano-Building Blocks, leading to many subsequent explorations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark F. Roll.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roll, M.F. Ionic borohydride clusters for the next generation of boron thin-films: Nano-building blocks for electrochemical and refractory materials. Journal of Materials Research 31, 2736–2748 (2016). https://doi.org/10.1557/jmr.2016.261

Download citation