Surface microstructure characterization on shot peened (TiB + TiC)/Ti-6Al-4V by Rietveld whole pattern fitting method


The surface microstructure of shot peened (TiB + TiC)/Ti-6Al-4V is investigated using Rietveld whole pattern fitting method. The domain size and microstrain of them are obtained. By comparing the calculated results between them, it can be found that the microstructure variations of Ti-6Al-4V are more severe than those of (TiB + TiC)/Ti-6Al-4V, which is due to the effect of reinforcements’ resistance to the deformation of the surface layer. The distribution of average domain size and microstrain of (TiB + TiC)/Ti-6Al-4V at varying depths are calculated, and the results are discussed in detail. Moreover, the probability distribution of the domain size at different depths is obtained using the lognormal distribution model. Based on the discussion, the results obtained from Rietveld whole pattern fitting method agree with the results calculated using the Voigt method, which reveals that the Rietveld method is an effective method of characterizing the surface microstructure of titanium matrix composites after shot peening treatments.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12


  1. 1.

    F.A. Girot, A.P. Majidi, and T.W. Chou: Metal matrix composites. In Encyclopedia of Physical Science and Technology, 3rd ed., R.A. Meyers, ed. (Academic Press, New York, 2003); pp. 485–493.

    Google Scholar 

  2. 2.

    S.C. Tjong and Z.Y. Ma: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng., R 29, 49–113 (2000).

    Article  Google Scholar 

  3. 3.

    S. Ranganath: Review on particulate-reinforced titanium matrix composites. J. Mater. Sci. 32, 1–16 (1997).

    CAS  Google Scholar 

  4. 4.

    M.E. Fitzpatrick, P.J. Withers, A. Baczmanski, M.T. Hutchings, R. Levy, M. Ceretti, and A. Lodini: Changes in the misfit stresses in an Al/SiCp metal matrix composite under plastic strain. Acta Mater. 50, 1031–1040 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    L. Wagner: Mechanical surface treatments on titanium, aluminum and magnesium alloy. Mater. Sci. Eng., A 263, 210–216 (1999).

    Article  Google Scholar 

  6. 6.

    S.E. Haghighi, H.B. Lu, G.Y. Jian, G.H. Cao, D. Habibi, and L.C. Zhang: Effect of α″ martensite on the microstructure and mechanical properties of beta-type Ti–Fe–Ta alloys. Mater. Des. 76, 47–54 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    M. Calin, L.C. Zhang, and J. Eckert: Tailoring of microstructure and mechanical properties in a Ti-based bulk metallic glass-forming alloy. Scr. Mater. 57, 1101–1104 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    L.C. Zhang and H. Attar: Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review. Adv. Eng. Mater. 18, 463–475 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    W. Lu, D. Zhang, X. Zhang, T. Sakata, and H. Mori: Hrem study of TiB/Ti interfaces in a Ti–TiB–TiC in situ composite. Scr. Mater. 44, 1069–1075 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    H.T. Tsang, C.G. Chao, and C.Y. Ma: In situ fracture observation of a TiC/Ti MMC produced by combustion synthesis. Scr. Mater. 35, 1007–1021 (1996).

    CAS  Article  Google Scholar 

  11. 11.

    H.C. Man, S. Zhang, F.T. Cheng, and T.M. Yue: Microstructure and formation mechanism of in situ synthesized TiC/Ti surface MMC on Ti–6Al–4V by laser cladding. Scr. Mater. 44, 2801–2807 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    W. Lu, D. Zhang, X. Zhang, R. Wu, T. Sakata, and H. Mori: Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique. J. Alloys Compd. 327, 240–247 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    M. Wang, W. Lu, J. Qin, D. Zhang, B. Ji, and F. Zhu: Superplastic behavior of in situ synthesized (TiB + TiC)/Ti matrix composite. Scr. Mater. 53, 265–270 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    J. Lu, J. Qin, W. Lu, Y. Chen, D. Zhang, and H. Hou: Effect of hydrogen on superplastic deformation of (TiB + TiC)/Ti–6Al–4V composite. Int. J. Hydrogen Energy 34, 8308–8314 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    J. Lu, J. Qin, W. Lu, D. Zhang, H. Hou, and Z. Li: Effect of hydrogen on microstructure and high temperature deformation of (TiB + TiC)/Ti–6Al–4V composite. Mater. Sci. Eng., A 500, 1–7 (2009).

    Article  Google Scholar 

  16. 16.

    J. Lu, J. Qin, Y. Chen, Z. Zhang, W. Lu, and D. Zhang: Superplasticity of coarse-grained (TiB + TiC)/Ti–6Al–4V composite. J. Alloys Compd. 490, 118–123 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    J. Almer, J. Cohen, and B. Moran: The effect of residual macrostresses and microstresses on fatigue crack initiation. Mater. Sci. Eng., A 284, 268–279 (2000).

    Article  Google Scholar 

  18. 18.

    G. Webster and A. Ezeilo: Residual stress distributions and their influence on fatigue lifetimes. Int. J. Fatigue 23, 375–383 (2001).

    Article  Google Scholar 

  19. 19.

    S. Tekeli: Enhancement of fatigue strength of SAE 9245 steel by shot peening. Mater. Lett. 57, 604–608 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    P. Zhang and J. Lindemann: Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scr. Mater. 52, 485–490 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    L. Xie, C. Jiang, W. Lu, Y. Chen, and J. Huang: Effect of stress peening on surface layer characteristics of (TiB + TiC)/Ti–6Al–4V composite. Mater. Des. 33, 64–68 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    R.A. Young: The Rietveld Method (International Union of Crystallography Monographs on Crystallography) (Oxford University Press, New York, 1995).

    Google Scholar 

  23. 23.

    B. Ghosh and S.K. Pradhan: Microstructure characterization of nanocrystalline Fe3C synthesized by high-energy ball milling. J. Alloys Compd. 477, 127–132 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    L. Lutterotti, P. Scardi, and P. Maitrelli: Simultaneous structure and size-strain refinement by the Rietveld method. J. Appl. Crystallogr. 23, 246–252 (1990).

    CAS  Article  Google Scholar 

  25. 25.

    N.C. Popa: The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J. Appl. Crystallogr. 31, 176–180 (1998).

    CAS  Article  Google Scholar 

  26. 26.

    B. Ghosh and S.K. Pradhan: One-step fastest method of nanocrystalline CuAlS2 chalcopyrite synthesis, and its nanostructure characterization. J. Nanopart. Res. 13, 2343–2350 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    L. Lutterotti: Maud — Materials Analysis Using Diffraction, Version 2.33,∼maud/ (2011). Accessed June 2014.

  28. 28.

    S. Ranganath, M. Vijayakumar, and J. Subrahmanyam: Combustion-assisted synthesis of Ti–TiB–TiC composite via the casting route. Mater. Sci. Eng., A 149, 253–257 (1992).

    Article  Google Scholar 

  29. 29.

    X. Zhang, W. Lu, D. Zhang, R. Wu, Y. Bian, and P. Fang: In situ technique for synthesizing (TiB + TiC)/Ti composites. Scr. Mater. 41, 39–46 (1999).

    CAS  Article  Google Scholar 

  30. 30.

    R. Hill and I. Madsen: Data collection strategies for constant wavelength Rietveld analysis. Powder Diffr. 2, 146–162 (1987).

    CAS  Article  Google Scholar 

  31. 31.

    R. Young and D. Wiles: Profile shape functions in Rietveld refinements. J. Appl. Crystallogr. 15, 430–438 (1982).

    CAS  Article  Google Scholar 

  32. 32.

    W. Lu, D. Zhang, X. Zhang, Y. Bian, R. Wu, T. Sakata, and H. Mori: Microstructure and tensile properties of in situ synthesized (TiBw + TiCp)/Ti6242 composites. J. Mater. Sci. 36, 3707–3714 (2001).

    CAS  Article  Google Scholar 

  33. 33.

    SPIPTM User’s and Reference Guide, The scanning probe image processor, Version 5.1, 2010.

  34. 34.

    L. Xie, L. Wang, C. Jiang, and W. Lu: The variations of microstructures and hardness of titanium matrix composite (TiB + TiC)/Ti–6Al–4V after shot peening. Surf. Coat. Technol. 244, 69–77 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    C.G. Granqvist and R.A. Buhrman: Ultrafine metal particles. J. Appl. Phys. 47, 2200–2219 (1976).

    CAS  Article  Google Scholar 

  36. 36.

    V. Haas and R. Birringer: The morphology and size of nanostructured Cu, Pd and W generated by sputtering. Nanostruct. Mater. 1, 491–504 (1992).

    CAS  Article  Google Scholar 

  37. 37.

    C. Kril and R. Birringer: Estimating grain-size distributions in nanocrystalline materials from x-ray diffraction profile analysis. Philos. Mag. A 77, 621–640 (1998).

    Article  Google Scholar 

  38. 38.

    N.C. Popa and D. Balzar: An analytical approximation for a size-broadened profile given by the lognormal and gamma distributions. J. Appl. Crystallogr. 35, 338–346 (2002).

    CAS  Article  Google Scholar 

  39. 39.

    D. Balzar and N.C. Popa: Analyzing microstructure by Rietveld refinement. Rigaku J. 22, 16–25 (2005).

    CAS  Google Scholar 

  40. 40.

    L. Xie, C. Jiang, W. Lu, Q. Feng, and X. Wu: Investigation on the surface layer characteristics of shot peened titanium matrix composite utilizing x-ray diffraction. Surf. Coat. Technol. 206, 511–516 (2011).

    CAS  Article  Google Scholar 

Download references


This work is supported by the projects of National Natural Science Foundation of China (Grant No. 51302168 and 51502142), the 973 Program under Grant No: 2014CB046701, Research Foundation of Educational Commission of Sichuan Province of China (16ZA0367), Jiangxi Foreign Cooperation Program (Grant No.: 20144BDH80004), and The Hujiang Foundation of China (B14006). The financial support of the General Program of Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 15KJB430021) and the Startup Foundation for Introducing Talent of NUIST (No. 2014r036) are gratefully appreciated. The authors also thank to the financial support of the National Natural Science Foundation of China (No. 51405356), and the Research Fund for the Doctoral Program of Higher Education of China (No. 20130143120015). The authors gratefully acknowledge Mr. Timothy Ethington and Mr. Landon Ostler for their assistance on improving the language.

Author information



Corresponding authors

Correspondence to Lechun Xie or Liqiang Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, L., Feng, Q., Wen, Y. et al. Surface microstructure characterization on shot peened (TiB + TiC)/Ti-6Al-4V by Rietveld whole pattern fitting method. Journal of Materials Research 31, 2291–2301 (2016).

Download citation